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Abstract

Semantic relationship extraction (RE) transforms text into structured data in the
form of <e1, rel, e2> triples, where e1 and e2 are named-entities, and rel is a rela-
tionship type. Extracting such triples, involves learning rules to detect and classify
relationships from text. Supervised learning techniques are a common approach, but
they are demanding of training data, and are hard to scale to large document collec-
tions. To achieve scalability, I propose using an on-line classifier, based on the idea of
nearest neighbor classification, and leveraging min-hash and locality sensitive hashing
for efficiently measuring the similarity between instances. The classifier was evaluated
with datasets from three different domains, showing that RE can be performed with
high accuracy, using an on-line method based on efficient similarity search. To obtain
training data, I propose using a bootstrapping technique for RE, taking a collection of
documents and a few seed instances as input. This approach relies on distributional
semantics, a method for capturing relations among words based on word co-occurrence
statistics. The new bootstrapping approach was compared with a baseline system, also
using a bootstrapping approach but relying on TF-IDF vector weights. The results
show that the new bootstrapping approach based on distributional semantics outper-
forms the baseline. The classifier and the bootstrapping approach are combined into
a framework for large-scale relationship extraction, requiring little or no human super-
vision. The proposed framework was empirically evaluated showing that relationship
extraction can be efficiently performed in large-text collections.

Keywords
Semantic Relationship Extraction, Min-Hash, Bootstrapping, Distributional Se-

mantics, Word Embeddings
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Resumo Alargado

Os processos de extracção de conhecimento analisam grandes volumes de dados
com o intuito de, a partir deles, inferir conhecimento. Um tipo de processos, conhecido
como KDD (do inglês Knowledge Discovery in Databases), permite extrair conheci-
mento a partir de informação estruturada, que normalmente reside em bases de dados
relacionais. Existe, no entanto, uma grande quantidade de informação não estruturada
a partir da qual é dif́ıcil inferir conhecimento. Por exemplo, nos relatórios internos de
empresas, arquivos de jornais e repositórios de artigos cient́ıficos, a informação impor-
tante encontra-se expressa em linguagem natural.

Transformar grandes colecções de documentos textuais em dados estruturados faz
com que seja posśıvel construir bases de conhecimento, que podem depois ser inter-
rogadas. Este processo de construção automática de conhecimento tem aplicações em
domı́nios diversos, como por exemplo, em bioqúımica ou jornalismo computacional.
Considere-se um exemplo de um bioqúımico quer saber que protéınas interagem com
uma dada protéına X mas não interagem com uma outra protéına Y . Poderia, para
tal, interrogar uma base de conhecimento sobre interacções entre protéınas, constrúıda
a partir de um repositório de artigos cient́ıficos de onde foram extráıdas as relações por
análise do texto (Tikk et al., 2010).

Imaginemos ainda que um jornalista pretende investigar quais as localizações vis-
itadas durante as campanhas eleitorais por todos os candidatos nos últimos 10 anos.
Analisar manualmente centenas de artigos noticiosos seria um processo custoso, mas
usar uma ferramenta para extrair todas as relações entre pessoas e locais tornaria
esta tarefa muito mais simples. Além disso, um jornalista poderá estar interessado em
analisar um arquivo de not́ıcias para descobrir interacções entre pessoas e organizações.

Em engenharia informática, extracção de informação é a tarefa que trata de identi-
ficar e extrair dados a partir de texto, em concreto entidades-mencionadas (i.e., pessoas,
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locais, organizações, eventos, protéınas, etc.), os seus atributos, e as posśıveis relações
semânticas entre elas (Sarawagi, 2008). A extracção de relações semânticas trata de
transformar texto em dados estruturados, triplos da forma <e1, rel, e2>, onde e1 e e2

são entidades-mencionadas, e rel um tipo de relação. Os triplos representam relações
semânticas, e.g.: relações de filiação entre pessoas e organizações, ou a interacção entre
protéınas. Estes triplos podem ser organizados em bases de conhecimento representadas
como grafos, onde as entidades mencionadas são vértices e as suas relações os arcos.
Este tipo de representação permite explorar uma colecção de documentos através de
interrogações considerando entidades e/ou relações, em vez de apenas correspondências
entre palavras.

Os métodos de extracção de relações semânticas são muitas vezes avaliados e com-
parados em competições usando dados públicos. A maioria das abordagens actuais
aplicam métodos baseados em kernels (Shawe-Taylor and Cristianini, 2004) explo-
rando grandes espaços dimensionais. No entanto, os métodos baseados em kernels
são altamente exigentes em termos de requisitos computacionais, especialmente se for
necessário manipular grandes conjuntos de dados de treino. Estes métodos são usados
em conjunto com outros algoritmos de aprendizagem, como o das Máquinas de Vectores
de Suporte (SVM, do inglês, Support Vector Machine) (Cortes and Vapnik, 1995), que
resolvem um problema de optimização de complexidade quadrática e que é tipicamente
feito off-line. Além disso, as SVMs apenas conseguem fazer classificação binária, sendo
necessário treinar um classificador diferente para cada tipo de relação a extrair. Este
tipo de abordagens tende a não escalar para grandes colecções de documentos. Além
disso, sendo um método de aprendizagem supervisionado, necessita de dados de treino,
que são muitas vezes dif́ıcil de obter.

Uma alternativa, proposta nesta dissertação, para fazer a extracção de relações
semânticas propõe, ao invés de aprender um modelo estat́ıstico supervisionado, classi-
ficar uma relação semântica procurando pelos exemplos mais similares numa base de
dados de exemplos de relações semânticas. Para um dado segmento de texto, contendo
duas entidades-mencionadas, que pode ou não representar uma relação semântica, o
algoritmo selecciona de uma base de dados os k exemplos mais similares (top-k). De
seguida o algoritmo atribui o tipo de relação ao segmento de texto de acordo com
o tipo mais frequente de entre os top-k exemplos seleccionados. Este procedimento
simula de certa forma um classificador baseado nos vizinhos mais próximos (k-Nearest
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Neighbors), onde cada exemplo é ponderado por um peso correspondente ao tipo de
relação que representa.

Uma abordagem ingénua ou simples para encontrar os top-k exemplos mais sim-
ilares, dado um segmento de texto r, numa base de dados contendo N exemplos de
relações semânticas, obriga a computar N × r similaridades. Este tipo de abordagem
facilmente constrange o desempenho de um sistema para grandes valores de N . Para
garantir a escalabilidade do algoritmo é necessário ultrapassar esta limitação, e reduzir
o número de comparações a fazer.

Esta dissertação propõe um classificador on-line baseado na ideia de encontrar ex-
emplos similares, tirando partindo da técnica de min-hash (Broder et al., 2000) e de
locality sensitive hashing (Gionis et al., 1999) para calcular de forma eficiente a simi-
laridade entre as relações semânticas (Batista et al., 2013a). O classificador proposto
foi avaliado com textos em inglês e português. Para a avaliação em inglês foram usados
conjuntos de dados públicos de três domı́nios diferentes, enquanto que para o português
foi criado um conjunto de dados (Batista et al., 2013b) tendo como base a Wikipedia e
a DBpedia (Lehmann et al., 2015). Os ensaios de avaliação mostraram que a tarefa de
extracção de relações semântica pode ser feita de forma rápida, escalável e com bons
resultados usando um classificador on-line baseado em procura por similaridade.

Um aspecto crucial nas abordagens de aprendizagem supervisionadas é a necessi-
dade de dados de treino em quantidade e variedade suficiente. Tipicamente, os dados
de treino são escassos ou não existentes. O seu processo de criação é custoso, envol-
vendo uma anotação manual por parte de humanos, normalmente mais do que um.
Para o caso espećıfico de treinar um classificador para extrair relações semânticas de
frases, é necessário construir um conjunto de dados de treino consistindo de frases onde
as entidades e o tipo de relações semântica entre elas está anotado. Uma abordagem
posśıvel para gerar dados de treino, sem intervenção humana, consiste em recolher
frases expressando relações semânticas por meio de bootstrapping. Um sistema de boot-
strapping aplicado à extracção de relações semânticas recebe como dados de entrada
uma colecção de documentos e um conjunto de exemplares de relações semânticas,
denominados sementes (Agichtein and Gravano, 2000; Brin, 1999; Pantel and Pennac-
chiotti, 2006).

Por exemplo, <Google, Mountain View> é um exemplar semente para a relação
semântica sede-em, entre organizações e localizações. O sistema começa por analisar
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a colecção de documentos recolhendo todos os contextos (e.g. palavras na vizinhança)
onde as entidades, parte de uma semente, ocorrem. Os contextos recolhidos são analisa-
dos e agrupados de forma a gerar padrões de extracção. De seguida, a colecção de docu-
mentos é novamente analisada, desta vez fazendo uso dos padrões de extracção gerados
anteriormente para encontrar novos exemplares do mesmo tipo de relação semântica
das sementes. Os novos exemplares, extráıdas a partir dos padrões, e, com base num
critério de inclusão definido sistema decide se os adiciona ou não ao conjunto de se-
mentes inicial. Este processo retorna ao ińıcio e é repetido até um determinado critério
de paragem ser observado.

O objectivo do bootstrapping, no âmbito da extracção de relações semânticas, é
expandir o conjunto de sementes com novos exemplares de relações semânticas, mas
limitando a deriva semântica (McIntosh and Curran, 2009), ou seja, evitando o desvio
progressivo da semântica das novas relações extráıdas da semântica das relações das
sementes iniciais.

As técnicas de bootstrapping actuais usam vectores com pesos TF-IDF (Salton and
Buckley, 1988) como representação do texto correspondente ao contexto de ocorrência
das entidades envolvidas numa relação semântica. No entanto, o processo de expansão
do conjunto inicial de sementes com este tipo de representação tem limitações. Usando
a representação de vectores com pesos TF-IDF, a similaridade entre dois segmentos
de texto (i.e., dois vectores) só é positiva se os mesmo segmentos tiverem pelo menos
uma palavra em comum. Podem ser aplicadas técnicas de stemming, fazendo com que
palavras com uma raiz ou origem comum fiquem com a mesma representação (Porter,
1997). No entanto, este tipo de técnicas apenas apenas resolve os casos para palavras
cuja a raiz ou origem é a mesma.

A Hipótese Distribucional do Significado (Harris, 1954) afirma que cada ĺıngua pode
ser descrita em termos da sua estrutura distribucional, i.e., em termos de ocorrências de
partes relativas a outras partes. Mais concretamente, se duas palavras co-ocorrem com
as mesmas palavras então há uma certa semelhança entre elas. Fazendo uma análise
estat́ıstica dos contextos de co-ocorrência de palavras diferentes é posśıvel gerar repre-
sentações vectoriais que capturam as relações entre palavras, designadas por embeddings
de palavras (Mikolov et al., 2013b).

Compondo embeddings de palavras é posśıvel capturar a similaridade entre dois
segmentos de texto, mesmo que não existam palavras em comum entre eles. Nesta
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dissertação proponho uma abordagem para o bootstrapping de relações semânticas
baseada na Hipótese Distribucional do Significado, mais concretamente, recorrendo
a representações que capturam relações entre palavras com base em estat́ısticas de
co-ocorrência, para representar os contextos de ocorrência das sementes. Este tipo de
abordagem permite que na fase de recolha de novos exemplares, usando os padrões de
extracção gerados, estes não necessitem de ocorrer em contextos contendo exactamente
as mesmas palavras que nos padrões, bastando que ocorram em contextos com palavras
semanticamente semelhantes.

Num ensaio de avaliação experimental, a nova abordagem de bootstrapping de
relações semânticas foi comparada uma base de referência, um sistema também de
bootstrapping baseado em vectores com pesos TF-IDF. Os resultados mostram que a
utilização de representações de contextos baseados em embeddings supera o desempenho
conseguido pela base de referência (Batista et al., 2015).

O classificador baseado em min-hash e a nova abordagem de bootstrapping baseada
em embeddings foram combinados num ambiente para extracção de relações semânticas
em larga-escala, que não requer supervisão humana. Neste ambiente, o sistema de boot-
strapping, recolhe, com base em algumas sementes, exemplos de relações semânticas.
Estes exemplos são depois indexados na base de dados do classificador min-hash. Após
a geração da base de dados de exemplares de relações semânticas dos vários tipos a
extrair, o classificador pode, de seguida, extrair vários de tipos de relações semânticas
fazendo uma única análise sobre uma colecção de documentos. Este ambiente de ex-
tracção de relações semânticas foi avaliado empiricamente mostrando-se que a extracção
de relações pode ser feita em larga-escala usando dados de treino gerados por bootstrap-
ping.

Palavras Chave

Extracção de Relações Semânticas, Min-Hash, Bootstrapping, Semântica Distribu-
cional, Word Embeddings
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1
Introduction

Knowledge discovery processes mine large volumes of data to build knowledge. One
class of such processes, known as Knowledge Discovery in Databases, mines informa-
tion stored in a structured form, usually a relational database. There is, however,
important information, available in unstructured form, for which it is hard to uncover
knowledge automatically. For instance, internal corporate reports, newspaper archives
and scientific articles, all hold important information expressed in natural language.

Transforming large collections of unstructured textual documents into structured
data makes it possible to construct knowledge bases, which can then be explored
through queries and data analyses. Such data can have applications in different do-
mains, such as biochemistry or computational journalism. A researcher in biochemistry
who wants to know which proteins interact with some protein X but not with another
protein Y , could query a knowledge base of known interactions, built by extracting
relationships among proteins documented in the scientific literature.

Suppose that a journalist wants to investigate which locations were visited during
election campaigns by all the candidates in the last 10 years. This would require
manually analysing hundreds of articles, but having a tool to extract from the articles
all the relationships between persons and locations would simplify this task. Moreover,
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a journalist might be interested in mining news archives for the discovery of interactions
between people and organisations.

Information Extraction concerns the task of automatically extracting structured
information from document collections, namely named-entities (i.e., persons, loca-
tions, organisations, events), their attributes, and semantic relationships between en-
tities (Sarawagi, 2008). Extracted relationships are represented by triples in the form
<e1, rel, e2>, where e1 and e2 are noun phrases of a relationship, and rel is the type
of relationship relating the two noun phrases.

Consider, for instance, the following sentence:

The linguist Noam Chomsky was born in East Oak Lane neighbourhood of
Philadelphia.

Two semantic relationships can be extracted between the the named-entities (identified
in bold):

<Noam Chomsky, place-of-birth, East Oak Lane>
<East Oak Lane, part-of, Philadelphia>

Applying this procedure to extract triples from a large collection of documents,
such as a news archive spanning over a period of several years, can generate millions of
of triples. These triples hold different relationship types relating named-entities, such
as persons, locations and organisations.

The extracted triples can be organised in special knowledge bases. Such knowledge
bases can be represented as graphs, where named-entities are vertices and relationships
are edges. This representation allows one to explore a document collection through
queries considering entities and relationships, instead of simply performing keyword
matching. For instance, given the graph shown in Figure 1.1, one could query the
knowledge base to return a list of persons that studied at any university located in the
city of Cambridge, Massachusetts. The knowledge base would return Buzz Aldrin, and
Barack Obama.

1.1 Large-Scale Relationship Extraction

Relationship Extraction methods are comparatively assessed in evaluation compe-
titions over public data-sets (Airola et al., 2008; Hendrickx et al., 2010). Most state-of-
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Figure 1.1: A sample of a knowledge-graph connecting relationship triples.

the-art approaches rely on kernel methods (Shawe-Taylor and Cristianini, 2004), which
explore large feature spaces without requiring explicit representation of the features.
Nonetheless, kernel methods are still highly demanding in terms of computational
requirements whenever one needs to manipulate large training data sets. Kernel meth-
ods, even if relying only on simple kernels, are typically used together with learning
algorithms, such as Support Vector Machines (SVM), proposed by Cortes and Vapnik
(1995). The training of SVM is a quadratic programming optimization problem and
is typically performed off-line. Moreover, given that SVM can only directly address
binary classification problems, it is necessary to train several classifiers (i.e., in a one-
versus-one or a one-versus-all strategy) to address multi-class relationship extraction
tasks.

This type of approach is hard to scale to large collections of documents (those
having a magnitude of tenths of thousands of documents or above). Moreover, these
approaches rely on training data to learn extraction models for certain types of semantic
relationships, and such data are expensive to obtain.

One alternative approach to perform relationship extraction could be based on the
idea of classifying a new relationship by finding the most similar relationship instances
from a given database of examples, instead of learning a statistical model. For a new

3



1. Introduction

relationship instance, the algorithm would select, from a database of already indexed
relationship instances, the top-k most similar instances. The algorithm would then
assign the relationship type, to the instance being classified, according to the most
frequent type at the top-k most similar relationship instances. This procedure essen-
tially corresponds to a weighted kNN classifier, where each example instance has a
weight corresponding to its similarity with respect to the instance being classified. A
naive approach to find the most similar pairs of relationship instances, in a database
of size N , given a relationship r, involves computing N × r similarities, which quickly
becomes a bottleneck for large values of N . To overcome this complexity, it is nec-
essary to achieve scalability. It is therefore highly important to devise appropriate
pre-processing operations that facilitate relatedness computations quickly.

One bottleneck of supervised approaches for relationship classification is the need
of training data, that is, sentences annotated with the semantic relationship that they
express. One possible approach to collect sentences expressing a specific semantic rela-
tionship with minimal or no human supervision is by bootstrapping. A bootstrapping
system starts with a large collection of documents and a few seed instances. A seed
instance contains two arguments in a relationship. For instance, <Google, Mountain
View> is a seed example of a located-in relationship, between the organisation Google
and the location Mountain View. The document collection is scanned to collect the oc-
currence contexts (e.g., the sentence, surrounding tokens) of the seed instances. Then,
the system analyses the collected contexts and generates extraction patterns. The
collection of documents is scanned once again using the extraction patterns to match
new relationships instances. These newly extracted instances are then added to the
seed set, and the process is repeated, until a certain stop criteria is met. This kind of
approach is appealing because it does not rely on manually annotated training data.
Instead, only a few seed instances of the relationship type to be extracted are required.

The objective of bootstrapping is thus to expand the seed set with new relation-
ship instances, while limiting the semantic drift, i.e. the progressive deviation of the
semantics for the extracted relationships from the semantics of the seed relationships.

State-of-the-art bootstrapping approaches rely on word vector representations with
TF-IDF weights (Salton and Buckley, 1988). However, expanding the seed set by
relying on TF-IDF representations to find similar instances has limitations, since the
similarity between any two relationship instance vectors of TF-IDF weights is only
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positive when the instances share at least one term. For instance, the two phrases:

Microsoft was founded by Bill Gates.

Bill Gates is the co-founder of Microsoft.

do not have any words in common between the named-entities in bold, but both rep-
resent the semantics that a person was the founder of an organisation. Stemming
techniques can aid in these cases, but such techniques would only work for variations
of the same root word (Porter, 1997).

The distributional hypothesis by Harris (1954), states that each language can be
described in terms of a distributional structure, i.e., in terms of the occurrence of parts
relative to other parts. Firth (1957) explored this idea, based on a word context,
popularized by the famous quote you shall know a word by the company it keeps. By
performing statistical analysis of co-occurrence contexts for different words, one can
generate representations that capture these relations among words, i.e., word embed-
dings. By relying on word embeddings, the similarity of two relational phrases can
be captured even if no common words exist. For instance, the word embeddings for
co-founder and founded should be similar, since these words tend to occur in the same
contexts.

In this dissertation I propose to apply the distributional hypothesis, in the form
of word embeddings, as an alternative to TF-IDF weighted vectors for bootstrapping
semantic relationship instances. The word embeddings approach allows the extraction
patterns to match new relationship instances, even if they do not occur in contexts
with the same exact words as in the extraction patterns. The words in the context and
in the extractions patterns just need to be semantically similar.

1.2 Research Questions and Methodology

This dissertation addresses the following research questions:

• Can supervised large-scale relationship extraction be efficiently performed based
on similarity search ?

• Can the distributional hypothesis increase the performance of bootstrapping rela-
tionship instances ?
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The first question was addressed by exploring an efficient similarity search algo-
rithm and applying it in the context of semantic relationship extraction classification.
The second question was addressed by researching existing approaches to induce word
representations based on the distributional hypothesis and using these representations
in bootstrapping semantic relationships from a large collection of documents.

The research strategy consisted of implementing the new algorithms and approaches
and evaluating them against state-of-the-art approaches over public datasets.

I have developed and implemented a new algorithm for supervised relationship ex-
traction based on similarity search. The algorithm was evaluated with English and
Portuguese datasets. The English datasets consisted of three different document col-
lections, from different domains, which are commonly used as benchmarks for seman-
tic relationship extraction. The Portuguese dataset was derived from DBpedia and
Wikipedia, and contains sentences in Portuguese expressing semantic relationship ex-
pressions between entities from DBpedia. The experiments with these datasets al-
lowed me to explore different configuration parameters and features of the proposed
algorithm, and to compare the performance of my approach against other algorithms,
measured in terms of precision, recall and F1.

I have developed and implemented new bootstrapping approach for discovering new
relationship instances from text, relying on the distributional hypothesis to generate
word vector representations. This approach was evaluated against another bootstrap-
ping approach, which does not rely on the distributional hypothesis. For experimental
validation, I used a large public collection of documents (Parker et al., 2011). Boot-
strapping approaches typically extract a significant number of semantic relationships
from a large collection of documents. Such collections are unannotated and therefore
evaluating the performance is not straightforward. I used an approach proposed by
Bronzi et al. (2012), which allows one to evaluate systems that perform relationship
extraction at a large-scale. This evaluation procedure allowed to tune the performance
of my approach and compare the results, in terms of precision, recall and F1, with
other bootstrapping approaches.

The two proposed algorithms were then combined in a framework to perform large-
scale semantic relationships. The bootstrapping approach collects training data for the
classifier. Since the supervised classifier works in an on-line fashion, new relationship
examples can be added, even for new relationship types. The classifier extracts different
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types of semantic relationships from large collection of documents. This framework
requires little or no human supervision, since it relies only on a few seeds for each
targeted relationship type to gather training examples. The framework was evaluated
in a experiment evolving a collection of 10 million of news articles. The evaluation of
this experiment was also done using the approach proposed by Bronzi et al. (2012).

1.3 Results and Contributions

The evaluation experiments of the proposed on-line supervised classifier show that
relationship extraction can be performed with high accuracy, using a computationally
efficient approach based on similarity search. The proposed algorithm is also fast
because, instead of learning a statistical model, it looks only for the most similar
relationship examples in a database to classify a new relationship. When measuring
the scalability and processing time, I observed that the time taken to process grew
linearly with the size of the dataset considered, with most of the processing time spent
in feature extraction.

The new semi-supervised bootstrapping approach, relying on word vector represen-
tations of the contexts expressing relationships, achieved good results on the exper-
iments, outperforming a baseline system that relies on TF-IDF vector weights. The
experiments also shown that the relaxed semantic matching caused by using the word
embeddings makes the system learn more extraction patterns and consequently extract
more relationship instances.

TREMoSSo, the framework integrating the two new proposed algorithms, was also
evaluated through an experiment. The results show that relationship extraction can
be performed at large-scale with little or no human supervision.

In addition to the new algorithms for relationship extraction and their assessment,
the main contributions resulting of this thesis are:

• A new framework TREMoSSo (Triples Extraction with Min-Hash and diStributed
Semantics), which performs large-scale extraction of semantic relationships based
on similarity search and the distributional hypothesis, requiring little or no human
supervision.

• An annotated dataset of Portuguese relationships which was generated for the
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evaluation of the experiments part of this dissertations and which is made publicly
available.

1.4 Publications

The work developed and presented in this thesis was originally published in peer-
reviewed international conferences and journals. Included and presented in greater
detail in this thesis, is the research described in the following publications:

• Semi-Supervised Bootstrapping of Relationship Extractors with Distributional Se-
mantics. David S Batista, Bruno Martins, and Mário J Silva. In Empirical
Methods in Natural Language Processing-EMNLP 2015. ACL, 2015. (Honorable
Mention for Best Short Paper)

• A Minwise Hashing Method for Addressing Relationship Extraction from Text.
David S Batista, Rui Silva, Bruno Martins, and Mário J Silva. In Web Informa-
tion Systems Engineering-WISE 2013. Springer Berlin Heidelberg, 2013.

• Exploring DBpedia and Wikipedia for Portuguese Semantic Relationship Extrac-
tion. David Soares Batista, David Forte, Rui Silva, Bruno Martins, and Mário J.
Silva. Linguamática, 5(1), 2013.

1.5 Thesis Outline

The remaining chapters of this dissertation are organised as follows. In Chapter 2,
I survey the different techniques used for relationship extraction, including proposed
evaluation methods, metrics and public datasets available, in addition to proposing a
taxonomy for organising the different approaches.

In Chapter 3, I introduce the distributional hypothesis and explain how the theory
behind it was exploited to generate rich representations of word vectors. I describe
models used to induce word vector representations, based on word-classes, matrix ap-
proaches, and based on neural networks.

In Chapter 4, I introduce MuSICo, the proposed on-line classifier to perform rela-
tionship extraction based on similarity search. I describe in detail the rationale behind
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the construction of the classifier and also present an evaluation of the performance
of the classifier over datasets from different domains comparing its performance with
other approaches, and an evaluation of its scalability.

In Chapter 5, I describe BREDS, a new semi-supervised bootstrapping approach,
which relies on word vector representations induced with distributional semantics and
its experimental evaluation. The results show that the performance is better than a
baseline obtained with another system using vectors weighted with the TF-IDF schema.

In Chapter 6, I describe the TREMoSSo framework, which integrates MuSICo and
BREDS, for relationship extraction requiring little or no human supervision. I also
describe an experiment where the framework was used to extract semantic relationships
from a large collection of news articles.

In Chapter 7, I summarize the achieved results, drawing conclusions about the
performance of the solutions proposed for relationship extraction, the conducted ex-
periments, and how they can provide answers to the research questions of this thesis.
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2
Relationship Extraction

This chapter reviews related work in semantic relationship extraction (RE) from
textual documents, proposing a taxonomy as a way of organising previously proposed
extraction methods. Each approach is characterized, along with a survey of the metrics
and public datasets that have been created to evaluate RE methods. The chapter also
reviews previous work in relationship extraction for Portuguese.

2.1 A Relationship Extraction Taxonomy

In general, a semantic relationship can be defined among multiple entities (n-ary).
Within the scope of this work only binary relationships will be considered, as we can
see, without loss of generality an n-ary relationship as a set of binary relationships.

Extracted binary relationships have the structure of a triple <e1, rel, e2>, where
e1 and e2 are named-entities or noun phrases in a sentence from which the relationship
is being extracted, and rel is a relationship type or class that connects the two other
arguments. Depending on the context, the terms entities, named-entities or nominals
are also commonly used to refer to the entity arguments of a relationship.

Different techniques have been proposed to tackle the problem of detecting and

11



2. Relationship Extraction
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Figure 2.1: A taxonomy of relationship extraction approaches.

extracting relationships from textual documents. Figure 2.1 depicts my proposed tax-
onomy for organising such techniques. These techniques can be divided in two main
branches, Traditional Information Extraction and Open Information Extraction.

Traditional RE techniques extract relationship instances that belong to a pre-
defined set of relationship types. These techniques include:

Rule-based approaches, which usually aim at extracting one type of relationship by
relying on manually-crafted rules. These were the first to be devised for extracting
relationships from text.

Supervised approaches, which are based on manually annotated documents. For
each pair of named-entities in a sentence, a label indicates the type of relation-
ship between the two entities. An annotated collection of documents is used to
train classifiers. Then, for any given sentence, a trained classifier can detect the
presence of a relationship type.

Semi-Supervised approaches, which make use of known relationships to iteratively
extract new relationships. From the textual contexts of seed relationships, the
approaches derive patterns, which are used in turn to derive new relationships.

Distantly Supervised approaches use a knowledge base of known relationships to
automatically collect large amounts of training data. The collected data is used to
train RE classifiers. If a relation is expressed between two entities in a knowledge
base, there is a high probability that the same relationship holds for a given
sentence where those two same entities are referred. A supervised classifier can
then be trained after collecting a large number of these sentences.

12
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Another approach is Open Information Extraction (OIE), introduced by Etzioni
et al. (2008). OIE is suited when the target relations are unknown and the textual data
is heterogeneous. OIE is mainly directed to perform RE over massive and heterogeneous
web corpora which are, in which the relations of interest are unanticipated, and their
number can be large. OIE techniques typically make a single pass over a corpus and
extract a large set of relational triples without requiring any human input. OIE can
be divided into two main categories, data- and rule-based.

Rule-based OIE relies on hand-crafted patterns from PoS-tagged text or rules oper-
ating on dependency parse trees.

Data-based OIE generates patterns based on training data represented by means of
dependency tree or PoS-tagged text.

Before any RE technique is applied, a pre-processing step exists where the text is
analysed to extract features characterizing a relationship. The next section describes
how the textual analysis is performed. The following section will then detail each of
the methods for RE.

2.2 Feature Extraction with Textual Analysis

Features are informative and discriminative characteristics of a sentence, which
facilitate the learning and generalization during the training of classifiers. Features
used in RE can be of different types: lexical, syntactic or semantic.

Lexical

Lexical features typically include:

• a sequence of words occurring between the words of the relationship arguments;

• a sequence of words in a limited context before, and after the words of the rela-
tionship arguments;

A sequence can be represented as n contiguous sequence of items (e.g., words or
characters) from a given text, denoted as n-grams (Suen, 1979).
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Figure 2.2: A syntactic dependency tree.

Words can also be reduced through lemmatisation or stemming (Porter, 1997),
which groups together different inflection forms of a word. For instance, the words
answers, answered and answering, all have has root the word answer.

Syntactic

Syntactic features are generated through grammatical analysis of the sentences. A
process, known as parsing or syntactic analysis, identifies how words group together
and relate to each other as heads and dependents (Manning and Schütze, 1999). The
result of this process is presented as a tree structure over a sentence, known as a
syntactic dependency tree. Figure 2.2 shows the syntactic dependency tree graph for
the sentence:

The linguist Noam Chomsky was born in East Oak Lane.

The root node in the tree corresponds to the word ’born’. The leaves represent
the words with the corresponding part-of-speech (PoS) tags. Each tag identifies the
grammatical category of a word. In the above sentence, the grammatical analysis
identifies six different tags:

• a determiner (DT): The;

• an adjective (JJ): linguistic;

• a proper noun (NNP): Noam, Chomsky, East, Oak, Lane;

• a verb in the past tense (VBD): was;

• a verb in the past participle (VBN): born;

• a preposition (IN): in;

14
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Other grammatical categories (i.e., tags) exist (Marcus et al., 1993). Petrov et al.
(2012) proposed a set of tags common to 22 languages. A PoS-tagging process scans
all words in a sentence and assigns a PoS tag to each. Typically, this is a pre-processing
step for parsing, which is faster than computing the whole tree with all the syntactic
dependencies.

The upper levels of a syntactic dependency tree explain how these words are grouped
and related to each other. A noun can be combined together with another noun,
forming a noun phrase. For instance, Noam Chomsky, might combine with an adjective
to form yet another noun phrase, linguist Noam Chomsky.

A pair of words is connected by a syntactic dependency, commonly defined as a
binary operation that takes as arguments the two related words:

dependency(head, dependent) (2.1)

Dependencies are individualised by labelled links imposing some linguistic condi-
tions on the linked words (Otero, 2008). McDonald et al. (2013) proposed a set of
syntactic dependencies common to six different languages.

Another possible parsing tree is a constituents tree, where nodes are words grouped
into sub-phrases, representing types of phrases (e.g., verb or noun phrases) and the
edges are unlabelled.

The Stanford Parser (De Marneffe and Manning, 2008; De Marneffe et al., 2006)
generates the following dependencies for the sentence:

The linguist Noam Chomsky was born in East Oak Lane.

• det: defines a relation between the head of an noun-phrase and its determiner:
det(Chomsky,The);

• nn: defines a noun compound modifier, any noun that serves to modify the head
noun: nn(Chomsky,Noam);

• nsubjpass: a passive nominal subject is a noun phrase which is the syntactic
subject of a passive clause. nsubjpass(Chomsky,born);
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• auxpass: a passive auxiliary of a clause is a non-main verb of the clause which
contains the passive information auxpass(was,born);

• prep in: a prepositional modifier of a verb, that serves to modify the meaning
of the verb: prep in(born,Lane);

In a textual analysis, syntactic features typically include:

• the PoS tags associated with each word;

• the syntactic dependency tree between the noun phrases that represent the ar-
guments in the relationship.

Computationally, syntactic parsing is much more expensive than PoS-tagging. Ex-
periments in RE by Wu and Weld (2010) show that tagging a sentence with its PoS-tags
can be as much as 30 times faster than syntactic parsing. In another experiment, Ak-
bik and Löser (2012) compare the analysis of 500 sentences by PoS-tagging and by
syntactic parsing, and report that PoS-tagging is about 25 times faster.

Semantic

Semantic features correspond to the semantic categories of words or noun phrases in
a sentence, representing the semantic arguments of a relationship. For instance, Noam
Chomsky is a PERSON, Massachusetts Institute of Technology in an ORGANISATION,
and Boston is a LOCATION. This process is known as named-entity recognition (NER),
and associates a word or sequence of words to a semantic category (Nadeau and Sekine,
2007).

Semantic features generated from a textual analysis process typically include:

• the semantic type of the noun phrases arguments in a relationship;

• the semantic type associated with other noun phrases occurring in the sentence,
which are not the arguments of the relationship.
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Example of linguistic features

Given the following sentence, which expresses a relationship between the named-
entities Noam Chomsky and East Oak Lane:

The linguist Noam Chomsky was born in East Oak Lane.

a textual analysis would generate the following features:

• the words: was, born, in;

• the sequence of PoS-tags between the named-entities: verb in past tense (VBD),
verb past participle (VBN), preposition (IN);

• the syntactic dependencies: nsubjpass, auxpass, prep in;

• e1:PERSON, e2:LOCATION.

The following section describes how each RE approach makes use of lexical, syntac-
tic and semantic features to detect and extract relationships from textual documents.

2.3 Rule-based

Rule-based methods employ a set of hand-made patterns to extract relationships.
These are typically aimed at one specific relationship type.

Hearst (1992) proposed a method to automatically extract the hyponymy rela-
tionships (i.e., is-a) between two or more noun phrases across a wide range of text.
Relationships are identified by patterns, which occur frequently and across different
text genres. Examples of such patterns are:

Pattern 1: such NP as {NP,}* { ( or | and ) } NP

... works by such authors as Herrick, Goldsmith, and Shakespeare.

<Herrick, is-a, author>
<Goldsmith, is-a, author>
<Shakespeare, is-a, author>
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Pattern 2: NP {, NP} * {,} or other NP

Bruises, wounds, broken bones or other injuries ...

<bruise, is-a, injury>
<wound, is-a, injury>
<broken bone, is-a, injury>

Pattern 3: NP {,} including {NP ,}* {or |and} NP

Some european countries, including Portugal and France.

<Portugal, is-a, european country>
<France, is-a, european country>

Muslea (1999) surveys different rule-based systems based on manually created ex-
traction patterns. The patterns are mostly based on information derived from the text
where the relationships are extracted from.

2.4 Supervised Methods

In supervised approaches, the extraction of relationships is modelled as a classi-
fication task. If labelled data of positive and negative examples of relationships are
available, a classifier can be trained. The classifiers are trained after a process of
textual analysis, which transforms the sentence into a set of features. Then, given a
sentence, where two entities were previously identified, the classifier predicts whether
the sentence contains a relationship between the two entities or not.

For each annotated example of a different relationship type, the extracted features
f1, f2, ..., fN form an N -dimensional representational vector:

x = [f1, f2, ..., fN ]

Then, supervised learning algorithms learn how to classify each relationship by assign-
ing weights to each feature and combining them effectively.
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2.4.1 Logistic Regression

Different supervised learning algorithms have been explored to perform relationship
extraction. For instance, in logistic regression (Cox, 1958) the hypothesis has the form
expressed in Equation 2.2:

hθ(x) = 1
1 + exp(−θ>x) (2.2)

where x is a vector of features; θ is a vector of weighting parameters, which are learned
to minimize a cost function J :

J(θ) = −
[
m∑
i=1

y(i) log hθ(x(i)) + (1− y(i)) log(1− hθ(x(i)))
]

(2.3)

where m is the total number of relationship instances, and y(i) is the true label for the
instance x.

Kambhatla (2004) applied a multinomial logistic regression to RE. He explored
lexical, syntactic, and semantic features, such as: the semantic types of the arguments,
the words between the two arguments in a relationship, and the PoS-tags of the words
on which the mentions are dependent in the dependency tree derived from the syntactic
parse tree.

2.4.2 Support Vector Machines

Support Vector Machines (SVM) are a popular classification technique (Cortes and
Vapnik, 1995). An SVM tries to find a linear hyperplane, in an N -dimensional space,
with the largest distance to the nearest instances of positive and negative classes.

Figure 2.3 shows an example of a two dimensional space of points X1 and X2. There
are, in general, a number of hyperplanes that separate the positive and the negative
training data. The SVM algorithm determines the optimal w (i.e., a vector normal to
the hyperplane), and b (i.e., bias) such that the corresponding hyperplane separates
the positive and negative training data with the maximum margin.

For most real-case scenarios, there is no linear hyperplane which can separate the
data. The soft margin hyperplane allows the data to be separated with a minimal
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number of errors. The method introduces a parameter C, and the optimization becomes
a trade-off between a large margin and a small error penalty. The parameter C is
selected such that a larger C corresponds to assigning a higher penalty to errors.

It is important to identify which features are good indicators of a relationship and
select only these when training a classifier. Feature engineering is a process where
features are selected on a trial-and-error basis in order to maximize the performance
of a classifier. For some datasets it can be difficult to arrive at an optimal subset of
relevant features, or it can be difficult to find a separating hyperplane in the given
input space.

Kernel Functions

One way to make the classes linearly separable is by embedding the points (i.e.,
features values) in a higher-dimensional feature space through a mapping function ϕ,
where a maximal margin separation is possible, as shown in Figure 2.4.

Kernel functions allow the SVM algorithm to operate in a high-dimensional feature
space without mapping each vector to that space, by simply computing the inner
products between the images of all pairs of data in that feature space (Shawe-Taylor
and Cristianini, 2004). More precisely, a kernel function K measures the similarity
between two relationship instances, defined as the mapping from K : X×X → [0,∞),
from the input space X to the similarity score, which corresponds to an inner product

Figure 2.3: A maximum margin separating plane.
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Φ

Figure 2.4: Mapping from a 2-D to 3-D space to find a linear separation.

between two vectors instances, in some feature space based on a mapping Φ:

K(x, y) = Φ(x) · Φ(y) =
n∑
i=0

Φi(x)Φi(y) (2.4)

where Φi(x) is a feature function over the instance x.
The idea behind kernel methods for relationship extraction is to explore exhaus-

tively rich input representations, such as syntactic dependency parse trees, in a higher
dimensional space, thus generating a much larger number of features than those given
in the input. Different kernels were proposed for the task of semantic relationship
extraction. Zelenko et al. (2003) described a kernel inspired in sub-sequence string
kernel (Lodhi et al., 2002). The kernel receives as input two objects representing
entity-augmented parse tree structures, and computes the similarity between two re-
lationships in terms of a weighted sum of the number of sub-trees that are common
between the two. The authors evaluated their approach with SVM and Voted Percep-
tron (Rosenblatt, 1958).

Culotta and Sorensen (2004) described a generalised version of the previous kernel,
based on dependency trees. In their approach, a bag-of-words kernel is also used to
compensate for errors in syntactic analysis. Every node of the dependency tree contains
extra information like PoS-tags, phrase types (i.e., noun phrase, verb phrase), or entity
semantic types.

A further extension is proposed by Zhao and Grishman (2005), using composite
kernels to integrate information from different syntactic sources. They incorporate
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tokenisation, parsing, and syntactic dependency analysis, so that processing errors
occurring at one level may be overcome by information from other levels.

Bunescu and Mooney (2005b) presented another alternative approach, which uses
information concentrated in the shortest path along a dependency tree between the two
entities. The authors argue that the shortest path between the two nominals encodes
sufficient information to infer the semantic relationship between them.

Bunescu and Mooney (2005a) presented a generalised sub-sequence kernel that
works with sparse sequences, containing combinations of words and PoS-tags to capture
the word-context around nominal expressions. Three sub-sequence kernels are used
to compute the similarity between relationship instances at the word level, namely
comparing sequences of words occurring (i) before and between, (ii) in the middle, and
(iii) between and after the nominal expressions. A combined kernel is simply the sum
of all three sub-kernels.

Zhou and Zhang (2007) employ diverse lexical, syntactic and semantic knowledge
in feature-based relation extraction using SVM with a linear and a polynomial kernel.
Features include: the words between, before and after the arguments of the relationship,
the semantic type of the arguments, the full syntactic parse tree and semantic resources
such as list of countries and WordNet (Miller, 1995).

Airola et al. (2008) introduced the All-Paths kernel. They use a representation
based on a weighted directed graph that consists of two unconnected sub-graphs, one
representing the dependency structure of the sentence, and the other representing the
sequential ordering of the words.

Other works continue to explore combinations or extensions of the previously de-
scribed kernel methods (Kim et al., 2010; Nguyen et al., 2009). However, most pro-
posals have been evaluated on different data sets, making it difficult to assess which is
better.

2.4.3 Multi-Class Classification

Supervised models for relationship extraction typically learn how to classify a rela-
tionship instance into one of K classes, where each class represents a type of relation-
ship.

Some models can be adapted to multi-class classification. For instance, the logistic
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regression algorithm introduced in 2.4.1 can be extended to a multi-class scenario. For a
given feature vector x of dimensionality N , the model estimates probability that P (y =
k|x) for each value of k = 1, ..., K. The hypothesis hθ(x), will output a K-dimensional
vector, whose elements sum to 1, representing the K estimated probabilities, as shown
in Equation 2.5:

P (y(i) = k|x(i); θ) = exp(θ(k)>x(i))∑K
j=1 exp(θ(j)>x(i))

(2.5)

where k is a class, x is a feature vector representing a relationship instance, and θ

denotes all the parameters of the model, which are represented by a N by K matrix,
obtained by concatenating θ(1), θ(2), ..., θ(K) into columns:

θ =

 | | | |
θ(1) θ(2) · · · θ(K)

| | | |


The parameters θ are learned by minimizing the following cost:

J(θ) = −
[
m∑
i=1

K∑
k=1

1
{
y(i) = k

}
log exp(θ(k)>x(i))∑K

j=1 exp(θ(j)>x(i))

]
(2.6)

where m is the number of training instances, K is the number of classes, yi is the label
associated with instance x, and 1 is the indicator function.

For other supervised algorithms like the SVM, which can only learn how to dis-
tinguish between two classes, the multi-class classification must be decomposed into
multiple binary classifications. There are two typical strategies:

One-versus-All: one model is trained per class, where examples of one class are
positive and all other examples from the remaining classes are negative. To
classify a new relationship, the model selects the class which reports the highest
confidence score.

One-versus-One: one model is trained between every possible pair of classes. Having
K classes, K(K − 1)/2 classifiers are trained. To classify a new relationship, a
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voting scheme is applied. All trained classifiers are applied to a new relationship,
and the classification with the highest number of predictions is attributed the the
new relationship instance.

Aly (2005) presents a survey of supervised algorithms and techniques for solving
multi-class classification problems.

Multiple SVM extensions to handle multi-class problems have been proposed, e.g.:
Weston and Watkins (1999), Bredensteiner and Bennett (1999), and Crammer and
Singer (2002). Nevertheless, these extensions introduce additional constraints that can
result in a larger optimization problem, which may be impractical for a large number
of classes.

2.4.4 Conditional Random Fields

Conditional Random Fields model the probability of a sequence of labels y =
(y0, . . . , yT ), given an input sequence of objects (e.g., words) x = (x0, . . . , xT ) (Laf-
ferty et al., 2001). The label sequence is modelled as a normalized product of feature
functions:

p(y|x) = 1
Z(x) exp

T∑
t=1

K∑
k=1

λkfk(yt−1, yt, x, t) (2.7)

where fk are feature functions, T is the length of the sequence, and Z(x) is a function
used to normalize the probabilities to 1. K is the number of feature functions, and λk

are feature weights. The weights are learned during training, using techniques such as
stochastic gradient descent or L-BFGS.

Culotta et al. (2006) model RE as a sequence labelling problem with CRF, and
explore implicit relationships. For instance, familial relation patterns: one’s sister is
likely one’s mother’s daughter, or a cousin is a father’s sister’s son. They propose
an integrated supervised machine learning method that learns both contextual and
relational patterns to extract relationships. In addition to common linguistic features,
such as neighbouring words and syntactic information, the work explored features that
incorporate relational patterns between entities. The relational patterns are extracted
from a graph that connects entities present in Wikipedia.
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2.4.5 Deep Learning

A new approach has been applied to perform relationship extraction based on neural
networks, called Deep Learning (Bengio et al., 2015; Schmidhuber, 2015).

Machine learning techniques for RE always introduce a textual analysis step which
generates features from text. These features are then used to train classifiers, which
learn to optimize the weight of each feature. Deep Learning takes a different approach.
Instead of feature extraction, each each word is represented as a dense vector of real
values in an n-dimensional space, referred to as word embeddings (Mikolov et al., 2013a;
Turian et al., 2010).

The challenge of Deep Learning approaches for NLP is how to learn a function to
compose these word embedding vectors to build a representation of multi-word units,
such as phrases or sentences. Ideally that representation should hold the semantics
of the sentence. Linguistic features can be explored and combined with the word
embeddings to derive compositionality functions. But there are also approaches which
learn the word embeddings specific for a task (Collobert et al., 2011).

The Matrix-Vector Recursive Neural Network (MV-RNN) model learns vector rep-
resentations for phrases, assigning a vector and a matrix to every node in a syntactic
parse tree (Socher et al., 2012). In each node, the vector captures the meaning of the
constituent, while the matrix captures how it changes the meaning of neighbouring
words or phrases. This approach was applied to relationship extraction by computing
the dependency path between the entities whose relationship is to be classified. Then,
the highest node in that path is selected and the relationship is classified using that
node’s vector as features for a classifier.

Hashimoto et al. (2013) followed the same approach but introduced a different
composition function, distinguishing words with the same spelling but different PoS-
tags and using different weight matrices dependent on the child nodes.

Ebrahimi and Dou (2015) noticed that, compared to constituency-based parse trees,
dependency graphs can represent a relationship more compactly. This holds especially
for sentences with distant entities, where the parse tree spans words that are not
relevant to the relation. They proposed a new compositionality structure to incorporate
dependency trees into a neural network based on the shortest path between the entities
of a relationship in a dependency graph.
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Dataset Domain Language # Relationship
Types

ACE 2002 (NIST, 2002) News English 24
ACE 2003 (NIST, 2002) News English 24
ACE 2004 (Doddington et al., 2004) News English 23
AImed (Bunescu and Mooney, 2005a) Biomedical English 2
Wikipedia (Culotta et al., 2006) Wikipedia English 47
BioInfer (Pyysalo et al., 2007) Biomedical English 23
ReRelEM (Freitas et al., 2009) News Portuguese 24
SemEval (Hendrickx et al., 2010) Generic Web English 19

Table 2.1: Manually annotated datasets for relationship extraction.

2.4.6 Evaluation

Supervised techniques for RE rely on manually annotated datasets for evaluation.
These datasets also constitute reference benchmarks for comparisons among different
systems. The two main domains of available datasets include news articles and biomed-
ical topics, such as articles about protein interactions. Table 2.1 lists datasets that have
been made available to the public.

In a RE evaluation, a dataset can be split in three parts: training, development,
and testing. The system to be evaluated is trained on the training set; the development
set is used for error analysis and parameter tuning; then, the system is evaluated over
the test set. In some evaluations, each dataset is only split into training and test parts.
To compare the performance of different systems over the same dataset, we need the
metrics typically used in Information Retrieval (IR) such as Precision, Recall, and F1:

Precision = #correctly extracted
#correctly extracted + #incorrectly extracted (2.8)

Recall = #correctly extracted
#relationships in the dataset (2.9)

F1 = 2× Precision× Recall
Precision + Recall (2.10)
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Comparing the results and globally evaluating the RE methods described in the
literature is not straightforward. Experiments with different kernels are evaluated over
different datasets, and some proposed techniques were evaluated on datasets created
by their proponents. For instance, in their seminal work, Zelenko et al. (2003) eval-
uate their sub-sequence kernel on 200 news articles over two types of relationships,
person-affiliation and organisation-location, obtaining F1 scores of 86.8% and 83.3%
respectively. The work by Culotta et al. (2006), based on CRF achieves a F1 score of
61% over the Wikipedia dataset.

Table 2.2 summarizes the scores achieved in terms of F1 of the techniques described
in previous sections, over public datasets. All the SVM-based approaches that con-
ducted experiments over the ACE datasets used only the major relationship, except for
Kambhatla (2004), which trained a multinomial logistic classifier over 24 relationship
sub-types. Each major type in the ACE dataset is a relationship that aggregates some
of the 24 sub-types. For instance, the relationships subsidiary-of, between organisations
and part-of between locations, are both aggregated into a major part-of relationship.
An SVM-based approach using only the five major relationship types, instead of the 24
relationship sub-types, substantially reduces the number of models to train in a multi-
class scenario. The best approach on the ACE news domain dataset was obtained by
Zhao and Grishman (2005), who report an F1 score of 70.4% over 7 major relationship
types.

In the biomedical domain, the All-Paths Kernel by Airola et al. (2008) achieves the
best results both in the AIMed and the BioInfer dataset, reporting F1 scores of 56.0%
and 61.3%, respectively.

The SemEval 2010 dataset covers a broader type of relationships drawn from the
Web (Hendrickx et al., 2010). Contrary to the other datasets, there is no semantic type
associated to the entities in a relationship. The best system achieved an F1 score of
82% (Rink and Harabagiu, 2010). Almost all participants took an SVM-based approach
with different kernels and features derived from external resources such Cyc (Lenat,
1995), WordNet (Miller, 1995), Roget’s Taxonomy (Jarmasz and Szpakowicz, 2003),
Levin’s verb classes (Levin, 1993) or Google’s n-gram collection (Michel et al., 2010).

Kernel-based methods achieve the best results, but are typically very demanding
in terms of computational requirements, especially for a large number of relationship
types or when applied to large document collections. Choi et al. (2013) present an
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2.5 Semi-Supervised Bootstrapping

extensive report over the kernel methods for RE.
Comparing Deep Learning approaches, Socher et al. (2012) report an F1 score of

71.9% over the SemEval 2010 dataset without using any external resources, i.e., us-
ing only word embeddings, and an F1 score of 82.4% when also adding PoS-tags,
WordNet hypernyms, and named-entity semantic types as features. Hashimoto et al.
(2013) achieved an F1 score of 79.4%, also relying on word embeddings only. Finnaly,
Ebrahimi and Dou (2015) achieved an F1 score of 82.6%, incorporating the same fea-
tures as Socher et al. (2012), but relying on a syntactic dependencies tree, instead of a
constituents tree.

2.5 Semi-Supervised Bootstrapping

Supervised approaches are dependent on labelled data to train classifiers. However,
labelled data is not always available, and annotating the needed data can represent a
bottleneck in RE processes. Plus, the cost associated with its manual annotation can
be prohibitive. On the other hand, unlabelled data is abundant and easily available
(e.g., the information available on the Web).

Semi-supervised bootstrapping approaches are appealing because they do not rely
on manually annotated training data. Instead, only a few seed instances of the rela-
tionship type to be extracted are required. A bootstrapping system for relationship
extraction starts with a large collection of documents and a few seed instances. A seed
instance contains two entities representing a relationship. For instance, <Google,
Mountain View> is a seed example of a located-in relationship, between an organi-
sation and a location. The document collection is scanned to collect the occurrence
contexts (e.g., a sentence, surrounding tokens) of the seed instances. Then, the system
analyses the collected contexts and generates extraction patterns. Next, the collection
of documents is scanned once again using the extraction patterns to match new rela-
tionship instances. These newly extracted instances, are then added to the seed set,
and the process is repeated until certain stop criteria are met.

A typical problem with these iterative approaches is semantic drift, the extraction
of relationships whose semantics are different from the semantics of the seeds. This
is mainly caused by collecting text segments where a seed occurs, but which do not
represent the same semantics as the seed instances. For instance, the seed <Google,
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Mountain View> would match contexts like: Google’s headquarters in Mountain View,
or Google, based in Mountain View, but could also match Google’s shareholders meeting
in Mountain View, which does not represent a located-in relationship. Collecting these
erroneous contexts leads to generating extraction patterns that target other relationship
types. As this type of errors propagate, the semantics of the extracted relationships
rapidly drifts away from the original.

2.5.1 Bootstrapping Semantic Relationships

Several approaches have been proposed to perform relationship extraction based on
semi-supervised bootstrapping.

DIPRE

One of the first systems to apply a semi-supervised bootstrapping approach to re-
lationship extraction was the Dual Iterative Pattern Relation Expansion (DIPRE),
developed by Brin (1999). DIPRE scans web pages looking for co-occurrences of <au-
thor, book> pairs that compose a seed. For each found co-occurrence it creates a tuple
of 7 elements:

<author, book, order, url, prefix, suffix, middle>

where order, a Boolean, is true if author occurs before book and false otherwise; url is
the URL of the document where the seed instance occurred. The prefix and suffix con-
tain a context window of 10 characters to the left and right of the matched entities and
middle represents the text between author and book. To generate extraction patterns,
DIPRE uses the 7-element tuples created for each occurrence found. An extraction
pattern outpattern, has the following structure:

<url, prefix, suffix, middle>

Tuples are grouped by matching order and middle. DIPRE verifies whether the order
and middle are the same. Then, it sets outpattern.prefix to the longest matching suffix
of the prefix ’s of the occurrences. Similarly, it sets outpattern.suffix to the longest
matching prefix of the suffix ’s from all the occurrences. These patterns are further
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2.5 Semi-Supervised Bootstrapping

generalized by introducing regular expressions. The new learned patterns are then used
to search the corpus again and extract new <name, is-author-of, book> relationships.

DIPRE controls drifting by implementing a simple mechanism to avoid generating
too general patterns, which can then extract relationship instances which do not rep-
resent an <name, is-author-of, book> relationship. This is based on estimating the
specificity of a pattern:

specificity(p) = |p.middle| · |p.urlprefix| · |p.prefix| · |p.suffix| (2.11)

A pattern p is rejected if the specificity(p) × n > t, where n is the number of books
with occurrences supporting the pattern p and t is a threshold.

Snowball

Snowball relies on bootstrapping to extract relationship instances (Agichtein and
Gravano, 2000; Yu and Agichtein, 2003). It follows DIPRE’s approach of collecting
three contexts for each seed occurrence, generating the tuple:

<BEF, e1, BET, e2, AFT>

where BEF contains the words occurring before the first entity, BET the words between
the two entities, and AFT the words after the second entity. Each context is represented
by a vector with the TF-IDF weighting schema (Salton and Buckley, 1988). The
contexts are then clustered by a single-pass clustering algorithm, using the cosine
similarity between the vectors representing the contexts as a similarity metric:

Sim(Ci, Cj) = α · cos(BEFi, BEFj) (2.12)
+ β · cos(BETi, BETj)
+ γ · cos(AFTi, AFTj)

where constants α, β, γ weight each vector. Each resulting cluster contains several
textual occurrences of seeds represented by three textual contexts. An extraction
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pattern is generated from each cluster by computing the centroids for each context
(i.e., BEF, BET, AFT) from all the occurrences.

The document collection is scanned once again, and, for each segment of text where
two named-entities with the same semantic types as the seeds occur, a <BEF, e1, BET,
e2, AFT> tuple is instantiated. This process requires the previous identification of the
named-entities in the text.

Then, the similarity between the instantiated tuples and each extraction pattern is
computed. If the score is greater than a threshold τsim, the instance is extracted.

Snowball ranks the learned patterns and extracted instances as a way to control
the semantic drift. A pattern is ranked according to the instances it extracted. If an
extracted instance contains an entity e1, which is part of an instance in the seed set,
and the associated entity e2 is the same as in the seed set, the extraction is considered
positive (i.e., Positive). If the relationship contradicts a relationship in the seed set
(i.e., e2 does not match), the extraction is considered negative (i.e., Negative). If the
relationship is not part of the seed set, the extraction is considered unknown (i.e.,
Unknown). Each pattern p is scored:

Conf(p) = Positive× Positive
Positive + Negative ·Wngt + Unknown ·Wunk

(2.13)

where Wngt and Wunk weight the negative and unknown extractions, respectively. The
confidence of a relationship instance is calculated based on the similarity scores with
the pattern that extracted it, weighted by the pattern’s confidence:

Conf(i) = 1−
|P |∏
i=0

(1− Conf(Pi)× Sim(Ci, Pi)) (2.14)

where P is the set of patterns that extracted i, and Ci is the segment of text where
i occurred. Instances with a confidence above a threshold τt are used as seeds in the
next iteration. After the first iteration, Snowball updates the confidence score of each
pattern, taking into consideration the confidence score in the previous iteration:

Conf(P ) = Confnew(P )×Wupdt + Confold(P )× (1−Wupdt) (2.15)
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where Wupdt is a weight term for the confidence values. When Wupdt is greater than
0.5, more weight is given to the new confidence score.

Espresso

Espresso, developed by Pantel and Pennacchiotti (2006) is another bootstrapping
system that relies on the similarity between extraction patterns and instances to control
semantic drift. As with any other bootstrapping system, Espresso starts with a set of
seed instances and collects text segments containing the seed terms. Expresso generates
extraction patterns by applying a pattern learning algorithm proposed for question
answering (Ravichandran and Hovy, 2002) to the collected sentences.

Two functions rank patterns (rπ) and instances (rl) based on point-wise mutual
information (PMI) (Church and Hanks, 1990). Both are recursively defined:

rπ(p) =

∑
i∈I

(
PMI(i,p)
maxpmi

× rl(i)
)

|I|
(2.16)

rl(i) =

∑
i∈I

(
PMI(i,p)
maxpmi

× rπ(p)
)

|P |
(2.17)

where the reliability of each manually supplied seed instance is rl = 1; maxpmi is the
maximum PMI between all patterns and instances, |P | is the set of all patterns, and
|I| the set of all extracted instances. The PMI between an instance i with arguments
e1, e2 and a pattern p is defined as:

PMI(i, p) = log |e1, p, e2|
|e1, ∗, e2| × |∗, p, ∗|

(2.18)

where |e1, p, e2| is the frequency of pattern p instantiated with e1 and e2, the wildcard
(i.e., *) represents any possible contexts. The reliability of an instance, rl, is the average
PMI with each pattern, weighted by the reliability of each pattern.

Only the top-k patterns are retained for the next iteration, where k is the number
of patterns from the previous iteration plus one. Next, the system extracts instances
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that match any of the patterns in P and ranks each according to rl keeping only the
top-m instances are kept for the next iteration.

Blohm et al. (2007) et al. evaluated different pattern ranking functions over seven
relationship types, comparing the pattern ranking used by Snowball against the PMI
based ranking used by Expresso. The ranking used by Snowball outperformed PMI
on five out of the seven relationship types. The experiments also showed that PMI-
based functions did not significantly outperform a baseline which gives random scores
to patterns. Moreover, a simple approach, such as scoring patterns according to the
number of distinct seed instances from which they are generated, yields better results
than elaborate measures, such as PMI.

2.5.2 Semantic Lexicon Acquisition

Semantic lexicon acquisition (SLA) systems extract concepts or terms and the as-
sociated semantic class, such as the semantic class of a proper-noun (i.e., male person,
female person, organisation, locations), or biomedical categories for terms found in
biomedical journals. SLA can been seen as a particular case of relationship extraction
(i.e., is-a relationships).

Seminal works relied on co-occurrence statistics to determine the membership of
a new term to the semantic class of the seeds (Riloff and Shepherd, 1997; Roark and
Charniak, 1998). Mutual bootstrapping introduced the idea of learning not only terms
of a particular semantic class, but also extraction patterns for a particular class (Riloff
and Jones, 1999).

SLA systems proposed different techniques to deal with semantic drift. Curran et al.
(2007) proposed a mutual exclusion bootstrapping algorithm to extract named-entities
associated with a semantic class. The algorithm attempts to minimise semantic drift
by using multiple bootstrapping instances, each with an exclusive term, and assumes
terms have a single sense (i.e., semantic class). Each class is extracted in parallel using
separate bootstrapping instances that compete to extract terms and contexts. If more
than one class attempts to extract the same term, that term is discarded.

McIntosh and Curran (2009) hypothesized that semantic drift occurs when a can-
didate term is more similar to recently added terms than to the seed terms or high
scored terms, added in the earlier iterations. Given a growing lexicon of size N , LN , let
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L1...n, correspond to the first n terms extracted into L, and L(N−m)...N correspond to
the last m terms added to LN . In an iteration, let t be the next candidate term to be
added to the lexicon. The drift ratio is defined as the average distributional similarity
with the first n extracted terms over the average distributional similarity with the last
m extracted terms.

drift(t, n,m) = sim(L1,...,n, t)
sim(LN−m,...N , t)

(2.19)

In their work, the distributional similarity between two terms is calculated using the
context tokens around each term, and the weighted Jaccard measure (Curran, 2004).
At each iteration, the set of candidate terms to be added to the lexicon is scored and
ranked. If the term has zero similarity with the last m terms, but is similar to at least
one of the first n terms, the term is selected. If the score is below a specified threshold
the term is discarded from the extraction process.

2.5.3 Evaluation

Semi-supervised bootstrapping approaches use the same precision and recall metrics
as supervised systems. However, bootstrapping approaches extract relationships from
large collections of documents. Due to their size, such collections (i.e., newspapers
archives, scientific articles), are typically not annotated, making the calculation of
precision and recall hard.

One common approach is to rely on an external knowledge base (KB) to provide the
ground-truth. The extracted relationship instances are compared against the known
instances of the same relationship type in the KB, which enables computing how many
extractions are correct.

Snowball’s evaluation of the performance of an extraction over a collection of doc-
uments D was based on determining an Ideal set, which contains all the tuples that
appear in D. The authors used as a knowledge base a structured directory of companies
containing organisation-location pairs. They created the Ideal set by identifying all
organisation names and possible variations in D, and then checked if the headquarters
of each organisation were mentioned nearby. They then created the Join set, which
is a join of the Ideal and the Extracted set (i.e., the output of the system) on the
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organisation as key. For each tuple < o, l > ∈ Ideal, the authors find a matching
tuple < o′, l′ > ∈ Extracted if o ' o′ (i.e., allowing organisation name variations) and
creating a new tuple < o, l, l′ >. Precision and Recall are then calculated as follows:

Precision =
∑|Join|
i=0 [li ' l′i]
|Join|

(2.20)

Recall =
∑|Join|
i=0 [li ' l′i]
|Ideal|

(2.21)

where li ' l′i is equal to 1 if the test value li matches the extracted value l′i, and 0
otherwise.

The authors of Snowball report a precision of 76% and a recall of 45% on a collection
of 300,000 news articles, extracting located-in relationships between organisations and
locations, given only five seed examples of relationships.

The evaluation of Espresso consisted of extracting relationships from two different
domains, news articles and chemistry texts. The evaluation was performed over a
sample of the output. For each instance, two human judges assigned a score of 1 for
correct, 0 for incorrect, and 1⁄2 for partially correct. The precision for a given set of
instances is the sum of the judges’ scores divided by the number of instances.

From the news articles domains, Espresso extracted three relationship types, with
the following precision values: is-a, 73%; part-of, 80%; succession, 49%. From the
chemistry domain, four relationship types: is-a, 85%; part-of, 60%; reaction, 91%;
production, 72.5%.

2.6 Distantly Supervised

Another paradigm for relationship extraction relies on a large knowledge base (KB)
holding relationships. If a relationship between two entities exists in the KB, then
there is a high likelihood that given sentence, from the same domain as the KB, men-
tioning the two same entities also expresses the same relationship. Collecting sentences
or text segments with this procedure generates a large amount of training data, which
can be used to train classifiers. For instance, having the following fact from DBpe-
dia (Lehmann et al., 2015):
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< Noam Chomsky, affiliated-with, MIT >

and looking for mentions of both entities in a document collection, one can match
segments of text like:

... leftist MIT professor Noam Chomsky once wrote ...

... Noam Chomsky, the MIT linguistics professor and political activist...

Then, the same procedure of a supervised approach follows: features are extracted by
textual analysis and a classifier can be trained.

Mintz et al. (2009) applied this paradigm using Freebase (Bollacker et al., 2008)
as KB, and collected sentences from Wikipedia articles that have pairs of entities
expressed in a Freebase relationship. The training was performed with a multi-class
logistic regression classifier using syntactic and lexical features. The authors report that
syntactic features can be helpful for relationships that are ambiguous or distant in their
expression in the sentence. Features from different mentions of the same relationship
were combined and used in conjunction.

Hoffmann et al. (2010) developed LUCHS, introducing a new technique: dynamic
lexicon features. These lexicons form Boolean features which, along with lexical and
dependency parser-based features, were used to train a CRF extractor for each relation.
While training a CRF extractor for a given relation, LUCHS uses a corpus of lists to
automatically generate a set of semantic lexicons, specific to that relation.

Nguyen and Moschitti (2011) created training data defined in YAGO (Suchanek
et al., 2007) and sentences from Wikipedia documents mentioned in Freebase. The
training data was used to learn an extractor based on combining a syntactic tree
kernel and a polynomial kernel, noting that using both dependency and constituent
structures within the combined kernel improve the performance of the system.

The drawback of these approaches are the noisy sentences; sentences that, despite
mentioning both entities, do not express the same relationships as in the knowledge
base. For instance, the first relationship instance introduced above, < Noam Chom-
sky, affiliated-with, MIT >, could also match a text segment such as:

... Noam Chomsky had a meeting at the MIT with ...
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System Knowledge Base #Extractors F1
Mintz et al. (2009) Freebase 102 67.6%
Nguyen and Moschitti (2011) YAGO 52 74.3%
LUCHS Wikipedia 5,025 61.0%

Table 2.3: F1 scores for distantly supervised systems.

which does not express the affiliated-with relationship. Roth et al. (2013) surveyed and
classified approaches to deal with noise reduction in three types: at-least-one (Hoffmann
et al., 2011; Riedel et al., 2010), Hierarchical Topic Models (Alfonseca et al., 2012) and
Patterns Correlations (Takamatsu et al., 2012)

2.6.1 Evaluation

Distantly supervised systems may be evaluated in two ways. One is to use only
part of the relationships in the database during training, and compare the extracted
relationship instances against the data that was held out during training. Another
is having humans evaluate a sample of the output results. Table 2.3 shows the used
KB, the number of relationship extractors learned and the F1 scores for the systems
presented in this section.

The work by Mintz et al. (2009) was pioneer in using semantic KB to collect large
amounts of training data. With a logistic classifier the authors report an F1 score of
67.6% for 102 relationship types. Nguyen and Moschitti (2011) combine a tree kernel
and a polynomial kernel, reporting F1 of 74.29% on 52 relationships.

LUCHS learns a much larger number of extractors compared to the other approaches
and introduces dynamic lexicons as features. The authors report an F1 score of 61%
for approximately 5,000 relationship types.

2.7 Rule-based OIE

In the above presented approaches, the relationship types to be extracted are known
a priori, enabling the manual building of specific patterns based on heuristics, or au-
tomatically inferring patterns from training examples. Open Information Extraction
(OIE) techniques, on the other hand, extract all possible relationship types from a given
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collections of documents. Rule-based OIE techniques rely on hand-crafted heuristics
based on textual features, such as PoS-tagged or dependency parse trees.

ReVerb

ReVerb extracts relationships based on a simple constraint: every relational phrase
must be either a verb (e.g., invented), a verb followed immediately by a preposition
(e.g., located in), or a verb followed by nouns, adjectives, or adverbs ending in a preposi-
tion (e.g., has atomic weight of ) (Fader et al., 2011). This corresponds to the PoS-tags
pattern shown in Figure 2.5.

If there are multiple possible matches for a single verb, the longest possible match
is chosen. If the pattern matches multiple adjacent sequences, ReVerb merges them
into a single relation phrase.

ReVerb is based on patterns expressed in terms of PoS-tags and noun phrase chunks,
making the extraction process fast. During extraction, the system first looks for a
matching relational phrase and then for the arguments (e1, e2) of the relationship, thus
avoiding confusing a noun in the relational phrase for an argument.

The downside of ReVerb is that it can only extract relationships that are mediated
by a verb. Moreover, it also fails to capture more complex forms of expressing a
relationship. For instance:

• a non-contiguous phrase structure: e1 is produced and maintained by e2;

• phrasal verbs: e1 turned e2 off ;

• when the relational phrase does not occur between the arguments: the e1 that e2

discovered, discovered by e1, e2 ....

R2A2 improves ReVerb with an argument learning component, which identifies the
arguments of a relationship (Etzioni et al., 2011). Through experiments, the authors

V | V P | V W* P

V = verb particle? adv?
W = (noun | adj | adv | pron | det)
P = (prep | particle | inf. marker)

Figure 2.5: ReVerb patterns for relationship extraction.
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note that most arguments of a relationship fit into a small number of syntactic cate-
gories. These categories are then captured by specific patterns based on PoS-tags. The
patterns capture noun phrases with prepositional phrases or lists among others.

DepOE

Gamallo et al. (2012) developed DepOE, a multilingual OIE system that first dis-
covers clause constituents in the dependency parse tree, and then applies a set of rules
over the clause constituents to extract relational triples. A clause is the smallest part
a of sentence with a coherent piece of information, consisting of one subject, one verb
and, optionally, an indirect object, a direct object, a complement, and one or more
adverbials phrases.

DepOE relies on DepPattern (Otero and González, 2012), a dependency parser,
to compute the syntactic dependencies of a sentence. Based on the dependencies,
the system identifies the clause constituents, concretely, the verb and its dependency
constituents: subject, direct object, verb propositions, or attributes. DepOE selects the
dependent lemma of the clause verb and then lists all the dependent lemmas linked
to the target lemma (as a head) through the syntactic dependency path. This results
in the constituents of the clause, including information about the head of the phrase.
The clause constituents and the verb phrase of each clause are the input for a set of
extraction rules, extracting one triple per clause.

ClausIE

ClausIE, developed by Del Corro and Gemulla (2013), reasons over the information
given by a dependency parser to extract relationships. After detecting a clause, ClausIE
identifies the clause type and the verb type using two insights. First, only seven
combinations of the clause constituents appear in the English language. Once the
clause type is identified, an extraction rule can be applied. The second insight is
that each occurrence of a verb in an English sentence can be classified into five types:
intransitive, copular, monotransitive, ditransitive, complex transitive.

The verb type along with the presence of a direct object, indirect object or a
complement, uniquely identifies the type of clause. Conversely, the verb type is uniquely
determined by the type of the constituents and the type of the clause. ClausIE uses
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these observations to detect the clause type. It then applies rules specific to each clause
to extract relationships.

2.8 Data-based OIE

Data-based techniques for OIE generate extraction patterns based on training data.
The extraction patterns are represented by PoS-tags or by syntactic dependencies.

TextRunner

TextRunner which was used by Etzioni et al. (2008) to introduce the paradigm of
OIE, generates a model in two phases, capable of extracting generic relationships. In
the first phase, a syntactic parser is applied to several thousand sentences, generat-
ing the corresponding syntactic dependencies. For each parsed sentence, TextRunner
applies a set of heuristic constraints to label the sentence as a positive example of a
relationship, for instance:

• the dependency path between e1 and e2 must be no longer than a certain length;

• the path from e1 to e2 along the dependency path does not contain relative
clauses;

• neither e1 nor e2 consist solely of a pronoun.

The sentences for which the constraints fail are labelled as negative. In the sec-
ond phase, the labelled sentences are mapped into a feature vector, with domain-
independent features that can be evaluated at extraction time without the use of a
parser. Examples of included features are:

• the sequence of PoS tags between e1 and e2;

• the PoS tag to the left of e1;

• the PoS tag to the right of e2.

The features are used to train a Näıve Bayes classifier. O-CRF (Banko and Etzioni,
2008) follows the exact same approach as TextRunner, but the RE is seen as a label
sequencing problem, training a CRF model instead.
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Wikipedia-based Open Extractor

The Wikipedia-based Open Extractor (WOE) developed by Wu and Weld (2010)
exploits Wikipedia infoboxes to collect examples of relationships. An infobox is a
structured template associated with an Wikipedia article, holding information about
the subject which the article describes.

WOE gathers sentences by matching attribute values from the infobox with sen-
tences in the text, keeping only sentences that contain references to both the sub-
ject of the article and attribute values from the infobox. The system has two vari-
ants, one working with PoS-tags (WOEPoS), and another with syntactic dependencies
(WOEParse). For each sentence, WOEParse computes the shortest dependency path con-
necting the subject and the attribute value. This process results in a set of patterns
represented as syntactic dependencies, which are scored based on their frequency.

WOE extracts relationships based on these patterns, scoring the relationships ac-
cording to the pattern that extracted it. WOEPoS extracts PoS-tags and a trains a
Conditional Random Field (CRF) to extract relationships.

WOE can also be considered a distantly supervised system, since it uses a knowledge
base to gather training data. Nevertheless, WOE aims at extracting generic relationship
instances, whereas supervised systems aim at a large but closed set of relationship types.

OLLIE

OLLIE, developed by Mausam et al. (2012), learns extraction patterns by combining
information taken from triples extracted with ReVerb and syntactic dependencies trees.
This enables mapping the syntactic dependency tree to an extraction pattern that
identifies the arguments of the relationship and the relation phrase, that is the sequence
of words that captures the relationship.

OLLIE first collects sentences from a corpus containing words that are part of a
ReVerb triple, including variations of the verb. For instance, given the triple <Paul
Annacone; is the coach of; Federer> this would include sentences such as Now coached
by Annacone, Federer is winning more titles than ever.

For each sentence, OLLIE computes the syntactic dependencies connecting the two
relationship arguments and the relational word. Next, it annotates the relation node
in the syntactic dependency path with the exact relation word and the PoS-tag, taken
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from the ReVerb triple associated with this sentence.
By checking some constraints over the syntactic dependency tree, OLLIE generates

extraction patterns. For instance, checking if the relational node, in the syntactic
dependency tree, is between the arguments of the relationship or if a proposition edge,
in the syntactic dependency tree, matches the preposition in the associated relational
triple. For patterns that fail to match the constraints, OLLIE generates semantic and
lexical patterns. First, it removes the relational word and then aggregates the patterns
based on the syntactic structure. Then, the relational word is replaced into a list of
words with which the pattern was seen. The extraction templates are generated by
replacing, in the ReVerb triples associated with each sentence the relational word with
rel, and by normalizing auxiliary verbs.

In the extraction phase, the system extracts the dependency path for any given
sentence and matches it with one of the extraction patterns. Then, the associated
extraction templates are used to identify the arguments of the relationship and the
relational word.

2.9 OIE Evaluation

Evaluating OIE systems is not straightforward, mainly due to the fact that the
systems produce a diverse and open set of relationships from a large collection of
documents. A common approach is based on human judges, no less than two, analysing
a sample of the output. Each output triple <e1, rel, e2> is judged as correct or incorrect
according to a common criteria to all judges. The degree of agreement among judges
is also measured using a statistical measure of agreement (Cohen, 1960; Fleiss et al.,
1971; Krippendorff, 2011). In addition, this process can be performed over the output
of several OIE systems, so that a comparative evaluation can be reported. Nevertheless,
it is not easy to summarize a global quantitative comparison of each presented OIE
system. Different authors perform experiments on different datasets, and use different
metrics, such as F1 scores or the area under the curve (AUC), typically on a precision-
recall graph, while others report precision only.

The evaluation of TextRunner consisted on analysing a sample of 400 triples with
a confidence score above 0.8, and extrapolating the results to triples extracted from a
9 million Web pages corpus. The authors report 7.8 million well-formed triples (i.e.,
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triples which represent relationships), 1 million of which are concrete triples (i.e., the
arguments are grounded to real-world entities). Of these 88.1% have been assessed as
correct.

O-CRF was compared with TextRunner on a dataset of 500 sentences (Bunescu and
Mooney, 2007), where O-CRF achieved an F1 score of 59.8% and TextRunner 36.6%.

WOEParse and WOEPoS are compared against TextRunner on 300 randomly selected
sentences from three different datasets: news articles, Wikipedia, and the Web. The
authors report only comparative results. WOEPoS achieves an F1 score between 18%
and 34% better than TextRunner, while WOEParse achieves an improvement between
72% and 91% over TextRunner. On average, it takes WOEParse 0.68 seconds to process
a sentence, while for TextRunner and WOEPos, it only takes 0.022 seconds, showing
that WOEParse is about 30 times slower, due to dependency parsing.

ReVerb was evaluated against WOEPoS and WOEParse on 500 randomly chosen
sentences from the Web. The performance for each system is evaluated in terms of
AUC in a precision-recall graphic. The AUC for ReVerb is 30% higher than WOEParse

and more than doubles the AUC for WOEPoS. ReVerb takes 16 minutes to process the
500 sentences, while WOEPoS need 21 minutes, and WOEParse takes 11 hours, due to
dependency parsing.

DepOE was compared against ReVerb on 200 randomly selected sentences from the
English Wikipedia. Both the relationship type and the arguments were considered
in the evaluation; the authors report a precision of 68% for DepOE and of 52% for
ReVerb.

OLLIE was evaluated against ReVerb and WOEParse on a dataset of 300 sentences
from three domains: news articles, Wikipedia and biology textbook. Each system
associates a confidence score with an extraction. Ranking the extractions based on
confidence, generates a precision-yield curve and each system is evaluated by measuring
the area under the precision-yield curve. According to the authors, OLLIE finds 4.4
times more correct extractions than ReVerb and 4.8 times more than WOEParse at a
precision of about 75%. Overall, OLLIE has 2.7 times larger area under the curve than
ReVerb and 1.9 times larger than WOEParse. The good performance of OLLIE is due to
extracting relationships where the relation is not expressed between the named-entities,
and the ability to handle relationships mediated by nouns and adjectives.

ClausIE was evaluated against TextRunner, WOEParse, ReVerb and OLLIE over
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System 500 Web 200 Wikipedia 200 NYT
ClausIE 1 706 / 2 975 598 / 1 001 696 / 1 303
OLLIE 547 / 1 242 234 / 565 211 / 497
ReVerb 388 / 727 165 / 249 149 / 271
WOEParse 447 / 1 028
TextRunner 286 / 798

Table 2.4: Correct extractions and total number of extractions on a comparative
ClausIE evaluation.

three datasets: 500 sentences taken from the Web, 200 from the Wikipedia, and 200
sentences from The New York Times (NYT). Table 2.4 shows the correct extractions
and total number of extractions, form each of the three datasets. Although ClausIE
outperformed the other systems the authors note that it was also the slowest one, not
giving specific details about computation times.

2.10 Relationship Extraction in Portuguese

The methods and techniques presented before were evaluated with experiments
considering English textual documents. In this section, I briefly review some of the
approaches taken and the developed systems to perform relationship extraction in
Portuguese textual documents. A more extended review of research done in semantic
relationship extraction for Portuguese can be found in Collovini et al. (2013).

2.10.1 Systems and Approaches

The ReRelEM evaluation task (Freitas et al., 2008), which was held in the scope of
the second HAREM event (Mota and Santos, 2008), published a dataset with annotated
relationship between named-entities. The dataset considered 24 relationship types.
Three systems participated on the task.

The SEI-Geo system recognizes only part-of relationships between geographic enti-
ties (Chaves, 2008). The system uses hand-crafted patterns based on linguistic features
to detect geographic entities in text. Then, pairs of entities are mapped into a geo-
graphic ontology and classified as correct if the relationship is already expressed in the
ontology. The best run of SEI-Geo achieved an F1 score of 45% on part-of relationship.
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The SeRELeP system by Bruckschen et al. (2008) recognizes three different types of
relationships, occurred, part-of, and identity. SeRELeP is also based on heuristic rules
applied over linguistic and syntactic features generated by PALAVRAS (Bick, 2000).
SeRELeP achieved an F1 score of 31% for the occurred relationship, 18% for part-of,
and 68% for identity.

The REMBRANDT system recognizes all the 24 different relationship types in
the dataset (Cardoso, 2008, 2012). REMBRANDT uses hand-crafted rules based on
linguistic features, relying on DBpedia (Lehmann et al., 2015) and Wikipedia as knowl-
edge bases. The system explores the categories, in-links and out-links of a Wikipedia
page associated with an entity for detecting and classifying relationships between
named-entities. Considering the 24 relationship types, REMBRANDT achieved an
F1 score of 45%.

All the three systems that participated in the ReRelEM are rule-based. Each uses a
set of hand-crafted heuristics to trigger the extraction of different types of relationships.
Each system opted for the recognition of different types of relationships, which makes
it difficult to draw conclusions about their relative performance. To the best of my
knowledge, the ReRelEM dataset has not been reported as used by any other system
or relationship extraction experiment. It would be interesting to apply supervised ap-
proaches, like kernel methods, which have shown very good results for English. There
may be a reason for this. Unlike other datasets, which contain annotated relationships
at a sentence level, the ReRelEM dataset contains annotations considering relation-
ships between named-entities within the whole scope of a document. This requires a
complex pre-processing step, such as dealing with anaphora references and co-reference
resolution.

Oliveira et al. (2010) present a system that extracts five types of relationships: syn-
onymy, hyperonymy, part-of, cause and propose, between terms modified by adjectives
or prepositions. The system is also based on hand-crafted patterns using lexical and
syntactic features. The syntactic features are extracted with the OpeNLP toolkit (Mor-
ton et al., 2005) trained with a Portuguese Treebank corpus containing syntactic an-
notations (Afonso et al., 2002). The system was applied to Wikipedia texts, obtaining
information that which was later used to build Onto.PT (Oliveira and Gomes, 2014) a
lexical network for Portuguese in the fashion of WordNet (Miller, 1995).

Garćıa and Gamallo (2011) compared the impact of different features in extracting
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occupation relationship instances over Portuguese texts. The authors used a supervised
approach, based on distant supervision, following the approach by Mintz et al. (2009)
which collects training sentences from Wikipedia infoboxes and texts. Each training
sentence is analysed extracting for each word the lemma and the PoS-tag. A syntactic
parser computes the syntactic dependencies between words. The training sentences
are then used to train an SVM classifier. The experiments show that lexico-syntactic
features achieve a higher performance than bags of lemmas and PoS-tags or syntactic
dependencies.

DepOE, which was already described in section 2.7, is an OIE system capable of
extracting relationships from Portuguese texts, but, as mentioned before, the authors
only report experiments for English (Gamallo et al., 2012).

Collovini et al. (2014) proposed a system to extract relational descriptors between
named-entities within the organisation domain (i.e., one of the entities in the relation-
ship is an organisation). A relational descriptor is a word or sequence of words that
describes a relationship between two named-entities. The proposed system learns a
CRF model, with features extracted by PALAVRAS. Among the features considered
are: PoS-tags, syntactic dependencies, semantic types associated to the named-entities,
and lexical features based on dictionaries of professions and occupations. The author
reports an F1 of 63%.

Souza and Claro (2014) report on developing a supervised OIE approach, similar
to ReVerb (Fader et al., 2011), for extracting relational triples from Portuguese texts.
They train and evaluate different classifiers with 500 annotated sentences, where pos-
itive and negative examples of relationships are labelled. The best F1 score is of 84%
obtained with a C4.5 decision tree classifier (Quinlan, 1993).

2.10.2 Discussion

Table 2.5 shows a comparison of the techniques and approaches used by the sys-
tems surveyed in this section. Most of the relationship extraction methods used with
Portuguese apply a traditional approach using hand-crafted heuristics that explore
different linguistic features. Nevertheless, recent works began to employ supervised
techniques and taking OIE approaches.

The systems presented and discussed throughout this chapter were evaluated over
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System Technique Approach
SEI-Geo (Chaves, 2008)

Rule-based Traditional

SeRELeP (Bruckschen et al., 2008)
REMBRANDT (Cardoso, 2008)
Oliveira et al. (2010)
Collovini et al. (2014) Supervised
DepOE (Gamallo et al., 2012) Rule-based OIESouza and Claro (2014) Supervised

Table 2.5: Comparison of RE systems for Portuguese.

English datasets. However, some are language independent and could be easily adapted
to Portuguese. An exception is the ClausIE system, which specifically exploits proper-
ties of the English language. To adapt these techniques to Portuguese, one would need
to replace their core components that perform textual analysis such as: PoS-tagging,
syntactic parsing, NER.

There are software toolkits and annotated datasets that can be useful to perform
textual analysis for Portuguese. One valuable resource is the PALAVRAS (Bick, 2000),
a syntactic parser, used by some of the approaches presented before. Unfortunately,
PALAVRAS is not available as open source software and its use for experiments depends
on the author’s permission.

Another valuable resource is the CINTIL Corpus (Barreto et al., 2006; Branco and
Silva, 2006), which can be used to train classifiers for different NLP tasks. CINTIL
contains several syntactic and lexical annotations such as PoS-tags, semantic class of
named-entities, and syntactic dependencies (Branco et al., 2012). CINTIL is a public
resource, but its use requires buying a license.

The Portuguese Treebank Floresta Sintáctica (Afonso et al., 2002) is a free resource
for Portuguese, which can be used to train a syntactic parser or a PoS-tagger. Many
other resources can be found in Linguateca (Santos, 2009), which produces and main-
tains a list of resources and software toolkits to perform NLP tasks for Portuguese.

I believe that if more resources were made publicly available and free for use, it
would boost the NLP research for Portuguese. Plus, if a software toolkit to perform
NER, PoS-tagging and dependency parsing for Portuguese was available to download
and use out-of-the-box this would increase the drive to produce and research text
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#Relationship Types Learning Data

Rule-based
At least one rule per
relationship type —

Supervised
Depends on the number Annotated sentences
of annotated with different
relationships types relationship types

Semi-supervised
A few seed instances
per relationship type A document collection

Distantly Supervised
A KB and a document

Depends on the KB collection

OIE
Extracts all possible None or automatically
relationship types labels data to learn

patterns

Table 2.6: Comparison of different techniques for relationship extraction.

mining applications in Portuguese, like RE. An alternative to a software toolkit could
be statistical models generated from Portuguese corpus-based resources, which could
be used in popular software toolkits such as Python NLTK (Bird et al., 2009), Stanford
CoreNLP (Manning et al., 2014) or OpenNLP (Morton et al., 2005).

2.11 Conclusion

This chapter reviewed existing approaches to perform relationship extraction. I pro-
posed a taxonomy as a way to organise the different methods, with two main branches:
Traditional RE and Open Information Extraction. Traditional RE techniques extract
instances of specific relationship types, while OIE techniques extract all possible rela-
tionships. Table 2.6 characterizes the approaches presented in this chapter in terms of
the number of distinct relationship types extracted and the use of learning data.

Rule-based techniques require strong linguistic expertise and are practicable if the
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goal is to extract just a few specific types of relationships. Rule-based methods typically
achieve a high precision but with a low recall.

Regarding supervised classifiers, kernel-methods, combined with SVM and incor-
porating external resources of knowledge to help the model generalize the extraction
patterns, achieve very good results. Also, recent techniques based on Deep Learning for
NLP achieve state-of-the art results. Both approaches are computationally demanding.
A fundamental component of supervised systems is training data. Even with a good
statistical model, the performance of a classifier is always dependent on the training
data and good performance requires in general a large number of examples of good
quality training data.

Semi-supervised bootstrapping approaches were mainly motivated by the lack of
training data. The challenge of this technique is to deal with semantic drift, i.e., the
progressive deviation of the semantics of extracted relationships from the semantics
of the seed relationships. The techniques to cope with semantic drift involve ranking
the extraction patterns and relationship instances as the bootstrapping progresses.
Nevertheless, different ranking methods and representations of the extractions patterns
and relationship instances can be explored to better differentiate between valid and
invalid instances.

Distant Supervision is another technique to alleviate the lack of training datasets.
The process involves selecting pairs of entities in a relationship, expressed in some
knowledge base (KB), and then collecting sentences where the same two entities co-
occur, automatically generating large amounts of training data. The challenge is to
select only sentences which truly express the same relationship as in the KB and discard
the noise. The process is related with semi-supervised bootstrapping. However, this
technique has a global vision of all the sentences where relationships exist, in contrast
with an iterative process.

OIE approaches extract all possible relationships and can be catalogued into two
dimensions: how the extraction patterns are built, and which features are used to
describe these same patterns. Table 2.7 organises the OIE systems described in this
chapter in this way.

Extraction patterns can be inferred based on data or manually built, and these
patterns can be represented by PoS-tags or by syntactic dependencies. PoS-tags are
computationally fast, but only capture local relations between words, only enabling
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PoS-tags Syntactic Dependencies

Data-based WOEPoS WOEParse

TextRunner OLLIE

Rule-based ReVerb ClausIE
R2A2 DepOE

Table 2.7: A comparision of OIE systems.

the extraction of local relationships. Syntactic dependencies capture long distance
relations between words in a sentence. Thus, they enable the extraction of long distance
relationships between entities. However, computing the syntactic dependencies is much
more computationally demanding than PoS-tagging.

To further use the output triples of OIE systems in other applications, for instance
knowledge base population, the triples need to be normalised (Kok and Domingos,
2008; Min et al., 2012; Soderland and Mandhani, 2007). In normalisation operations,
two problems need to be solved:

Polysemy occurs when the same relational phrase has different meanings. For in-
stance, given the triples <Euro, currency of, Germany> and <authorship, cur-
rency of, science>, although both triples have the same relational phrase, the
meaning is different. In the first, the relational phrase indicates the currency
of a country, while in the second it is used as metaphor to express a factor of
importance in an area.

Synonymy occurs when the same semantic relationship can be expressed by different
relational phrases. For instance, in <Euro, currency used in, Germany> and
<Dinar, legal tender in, Iraq>. Although both relations have different relational
phrases, they express the same relationship.

Which OIE approach (i.e., data-based or rule-based) performs better is a matter
of continuous debate in the research community. Manually devising a set of rules is
in some cases enough to achieve good performance (Gamallo et al., 2012; Mausam
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et al., 2012). These approaches are appealing since there is no need to gather data and
train complex machine learning models. But efficiently devising these rules requires
linguistic expertise and language-specific knowledge, and not all rule based approaches
can be universally applied to every language.

In contrast, relying on large collections of documents and training statistical mod-
els to infer extractions rules requires less linguistic expertise. Also, by performing
language-specific accommodations, most machine learning techniques can be adapted
to different languages, and many resources for performing syntactic analysis in many
languages are available (McDonald et al., 2013; Petrov et al., 2012).

Most of the recent published work for relationship extraction starts to explore Deep
Learning approaches. At the core of Deep Learning for NLP are vector based repre-
sentations, which map words to an n-dimensional space. The next chapter describes
the theory behind these representations and how these vectors are generated.
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Distributional Semantics

This chapter describes some of the existing approaches to inducing a semantic
model based on co-occurrences. It starts by introducing the distributional hypothesis
and then describing methods that exploit it to generate semantic models. The methods
fall into three distinct groups: class-based word representations, which are based on
word clusters; semantic vector space models, where word vector representations are
built from matrices of co-occurrences; and word vectors, induced using neural language
models.

3.1 Distributional Hypothesis

The distributional hypothesis by Harris (1954), states that each language can be
described in terms of a distributional structure, i.e., in terms of the occurrence of parts
relative to other parts. Firth (1957) explored this idea, based on a word context,
popularised by the famous quote you shall know a word by the company it keeps.
Later, Rubenstein and Goodenough (1965) have shown that a pair of words is highly
synonymous if their contexts show a relatively high amount of overlap.

The idea behind the distributional hypothesis is that there is a correlation between
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3. Distributional Semantics

... with the Les Paul guitar that Gibson began manufacturing ...
... own solid-body electric guitar made by Gibson in 1940 or 1941 ...

... acoustic and electric guitar are used in a variety of musical genres ...
... the classical guitar is a nylon-string guitar ...

Figure 3.1: Example of possible contexts for the word guitar.

distributional similarity and meaning similarity (Sahlgren, 2008). This encouraged dif-
ferent lines of research to estimate the meaning of a word based on its co-occurrence
with other words. Note that the hypothesis does not require that the words co-occur
with each other, it only requires that words co-occur within the same context. Fig-
ure 3.1 gives an example of possible contexts for the word guitar. The word guitar can
be described by words such as: Les Paul, Gibson, solid-body, electric, acoustic, classic,
nylon-string.

3.2 Class-based Word Representations

A simple technique to induce a distributional semantics model consists of assigning
a class to each word, in a way that semantically similar words will belong to the same
class. This can be performed by inducing clusters over words which tend to occur in
the same contexts.

3.2.1 Brown Clustering

Brown clustering is a bottom-up hierarchical agglomerative clustering algorithm,
which generates clusters of semantically similar words, maximizing the mutual infor-
mation of bi-grams (Brown et al., 1992). The algorithm takes as input a corpus, seen
as long sequence of words. Initially, Brown clustering starts with a partition C of |V |
clusters, with each distinct word in the vocabulary V assigned to a cluster. Then, it
considers all pairs of possible pairwise merges of clusters, and selects the merged pair
that maximizes the quality of the current partition C:

Quality(C) =
V∑
i=1

log P(C(wi)|C(wi−1))× P(wi|C(wi)) (3.1)
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where wi is a current word, wi−1 is the previous word, C(wi) is the cluster of the current
word and C(wi−1), is the cluster of the previous word.

The model considers two probabilities, P(c|c′) of a transition to c, given that the
previous cluster was c′, and P(w|c), the probability that cluster c generates the word
w. Equation 3.1 decomposes into:

Quality(C) =
∑
c,c′

P(c, c′) · log P(c, c′)
P(c)P(c′) + G (3.2)

where the term G is a constant and therefore ignored. The remaining corresponds to
the mutual information (MI) of C, which defines Quality(C). The MI of C is estimated
by counting the relative frequencies of unigrams and bi-grams. So, at each iteration,
the algorithm merges the clusters a, b having the maximum score:

L(a, b) =
∑
d∈C′

MI(a ∪ b, d)−
∑
d∈C

(MI(a, b) + MI(a, c)) (3.3)

where, a∪b is the new cluster, resulting from the merge of a with b, C is the current set
of clusters, and C ′ = C − a, b+ a ∪ b is the set of clusters after merging a with b. This
procedure runs iteratively until a pre-determined number of clusters M is reached.

3.3 Semantic Vector Spaces

Semantic Vector Spaces represent each word as a vector, based on the analysis of
the co-occurrences of each word in its different contexts. This process involves the
following steps:

1. Building a co-occurrence matrix.

2. Weighting the matrix elements.

3. Applying a dimensionality reduction technique.

4. Comparing vectors to estimate relatedness.
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Building a Co-Occurrence Matrix

The process starts by creating from a large collection of documents a matrix MW×C ,
where W is the vocabulary size, that is, the number of distinct words in the collection
of documents, and C represents the different contexts where a word or a group of words
occurs. The type and size of context may vary. Each row Mw represents a word, and
each column Mc is some defined context where w occurs. The Hyperspace Analogue to
Language (HAL), proposed by Lund and Burgess (1996), generates a matrix considering
every word-word co-occurrence within a context window. Columns and rows represent
every word in vocabulary, and each cell represents the summed co-occurrence counts for
each word pair. This procedure is sensitive to direction. A row contains co-occurrence
information for words appearing before the word in consideration, the column for the
same word contains co-occurrence information for words appearing after.

Element Weighting

Each entry Mw,c has a score which represents an association between a word and
a context. This score can be calculated by different approaches, from a simple count
of co-occurrence frequency to more complex weighting schema, like TF-IDF (Jones,
1972), Pointwise Mutual Information (PMI) (Church and Hanks, 1990), among others,
as described by Kiela and Clark (2014).

Dimensionality Reduction

The vectors Mw representing a word, typically have high dimensionality and are
sparse. Sparsity is due to the fact that the majority of the words in a language occur
only in a limited number of contexts, comparing to all possible contexts. On the other
hand, only a very small number of words are distributed uniformly by a large number
of contexts. This is a particular example of a more general phenomena known as Zipf’s
law (Zipf, 1949).

Popular methods to reduce the sparsity of the matrix include Latent Semantic
Analysis (LSA) (Landauer and Dutnais, 1997), which corresponds to a singular-value
decomposition (SVD) (Golub and Kahan, 1965). The SVD eliminates any linear com-
bination and decomposes a matrix M into three matrices: M = U Σ V T , where U
and V are are orthogonal and have unit length, and Σ is a diagonal matrix with the
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singular values of M . A matrix M̂ = Uk Σk V
T
k is the matrix of rank k that best

approximates M , formed by the top k singular values, and Uk and Tk the matrices
produced by selecting the corresponding columns from U and T .

Random Indexing (RI) incrementally generates a dimensionally-reduced matrix (Kan-
erva et al., 2000; Sahlgren, 2005). Each context is associated with a unique randomly
generated vector. The vector is sparse, with D dimensions, each having three possi-
ble values, +1, -1, and 0. Next, context vectors are generated by scanning the text,
one word at the time. Each time a word occurs in a context, that context’s vector is
added to the already collected context vector for the word in question. Words are thus
represented by D-dimensional context vectors that are effectively the sum of the word
contexts. The D-dimensional random index vectors are nearly orthogonal, meaning
that a RI-generated matrix M ′

W×D is an approximation of the standard co-occurrence
matrix MW×C . The corresponding rows are similar or dissimilar to the same degree,
but with D � C.

Comparing Vectors

Each vector row represents a word, and the relatedness between two words can
be measured by comparing their vectors. The most popular measure to compare two
vectors is probably the cosine of the angle between them (Salton et al., 1975), which
corresponds to the inner product of the vectors, after they have been normalised to unit
length. Kiela and Clark (2014) survey similar metrics for measuring the relatedness
between two words including the Euclidean distance, the Manhattan distance, among
others. Any distance measure can be converted to a measure of similarity by inversion
or subtraction.

3.4 Language Models

One problem with the vectors generated by matrix-based approaches is the sparsity
and their high dimensionality. Vectors will have a large number of dimensions, typically
in the order of 104 to 106, even when applying dimensionality reduction techniques. An
alternative are word embeddings, which are words vectors learned by a neural network.
Such vectors, typically, have a lower number of dimensions (e.g., between 102 and 103),
comparing to matrix-based approaches, and are dense.
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This section starts by introducing n-gram language models and discussing their
limitations. Then, it presents a seminal approach to generate language models based
on neural networks, which attacked some of the limitations of n-gram language models
and introduced the idea of representing a word by a dense vector containing real values.
Finally, neural network approaches that focus only on learning word embeddings are
discussed.

3.4.1 n-Gram Models

Language models estimate the probability of a given sequence of words. They are
typically represented by the conditional probability of the next word in a sequence
of n-words, given all the previous ones. The n-gram model assigns probabilities to a
sequence of words by factorising the joint likelihood of the sequence into conditional
likelihoods of a word given a context of previous words (Manning et al., 2008):

P(w1, w2, . . . , wm) =
m∏
i=1

P(wi | wi−(n−1), . . . , wi−1) (3.4)

This conditional probability can be estimated with counts of n-grams frequency:

P(wi | wi−(n−1), . . . , wi−1) = count(wi−(n−1), . . . , wi−1, wi)
count(wi−(n−1), . . . , wi−1) (3.5)

Traditionally, n-grams of words are used to represent the previous context of a word.
A larger context gives a better prediction, but also increases the model complexity and
data sparsity. Typically, models take into account trigrams (n = 3). Another problem
with this approach is how to estimate the probability of sequences which have not been
observed in the training data. Proposed solutions include smoothing techniques, for
instance by combining smaller contexts of n-grams to model an unseen context (Chen
and Goodman, 1996).

3.4.2 Neural Network Language Models

Another approach to generate language models is based on neural networks (McCul-
loch and Pitts, 1943). In the process of estimating the model parameters, the network
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INPUT PROJECTION HIDDEN OUTPUT

w (t i−1)

w (t i−2)
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Figure 3.2: The Neural Probabilistic Language Model.

learns word vector representations called word embeddings. These embeddings are the
result of projections, which transform sparse and integer-valued vectors to real-valued
vectors of a lower dimension.

Neural Probabilistic Language Model

The seminal work of Bengio et al. (2003) proposed the Neural Probabilistic Lan-
guage Model (NPLM), introducing two major improvements to the n-gram language
models: considering larger contexts and exploring the distributional hypothesis to gen-
eralize to contexts not seen during training.

In the NPLM, the probabilistic prediction of P(wi | wi−(n−1), . . . , wi−1) is obtained
as follows. Each word wi, from a vocabulary V , is represented by a real vector vi ∈ Rm.
A matrix C of dimension |V |×m represents all the vectors of the vocabulary V , which
can be randomly initialized or based on prior knowledge. The parameter m defines the
dimension of the vectors.

The model maps an input sequence of words to a conditional probability distribution
over all the words in V . The input is a vector X, corresponding to the concatenation
of each word vector in the word sequence, and the output is a vector of dimension V

whose i-th element is P(wt = i|wt−n+1, . . . , wt−1), the probability of wi being the next

59



3. Distributional Semantics

word in the sequence.
The NPLM can be implemented by a feed-forward neural network with linear pro-

jection layer, which simply concatenates the input words, a non-linear hidden layer,
and a softmax function at the ouput, as shown in Figure 3.2. The softmax function at
the output guarantees positive probabilities summing to 1:

P(wt|wt−n+1, . . . , wt−1) = exp(ywt)∑|V |
i=1 exp(yi)

(3.6)

where the vectors yi are the unnormalized log-probabilities for each output word i com-
puted by the hidden layer. The non-linear hidden layer is trained by stochastic gradient
descent with backpropagation (Rumelhart et al., 1988), looking for the parameters θ
that maximize L(θ):

L(θ) = 1
|T |

T∑
t=1

log P(wt|wt−n+1, . . . , wt−1; θ) (3.7)

NPLM jointly learns word vector representations and the language model. Bengio
(2008) introduces in greater detail the neural network language model describing the
NLPM.

Continuous Skip-Gram and Continuous Bag-of-Words

Mikolov et al. (2009) proposed to train a language model in two steps: first, word
vectors representations are learned using a simple model, and then the language model
is trained on top of these distributed representations of words.

Inspired by this idea of learning word vector representations detached from the
language model, Mikolov et al. (2013a,b) proposed the Skip-Gram model, focusing
only on learning word embeddings. The main idea behind this model is to predict the
most probable surrounding words in a context window of length c for every given word
w in a corpus, for every possible context windows t in a corpus. Formally, to maximize
the average log probability of any context word given the current center word:

L(θ) = 1
T

T∑
t=1

∑
−c≤j≤c,j 6=0

log P(wt+j|wt; θ) (3.8)
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Figure 3.3: The Skip-gram model.

in the formula above, the second summation represents the sum over all the words in
contexts windows up to c many words away from the center word, ignoring the center
word.

Similar to the Skip-Gram, the Continuous Bag-of-Words (CBOW) model, which
sums the outside words and predicts the center word (Mikolov et al., 2013a), instead
of predicting the surrounding words given a center word.

Both the Skip-Gram and the CBOW have a single-layer architecture based on the
inner product between two word vectors, and both use the context of a word, instead of
only the preceding words. Figure 3.3 and Figure 3.4 show the architecture of the Skip-
Gram and CBOW the models, respectively. Rong (2014) comprehensively explains the
parameter learning process of both models in greater detail.

3.5 Evaluation

The models presented above can be evaluated in two different scenarios. An intrinsic
evaluation involves word similarities tasks. An extrinsic evaluation involves altering a
system to solve a specific NLP task. A system has its original or word or features
representation model replaced or augmented with a new model, then the performance
of this new system is compared with the performance of the original system.
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Figure 3.4: The continous bag-of-words model.

Intrinsic

The synonym part of Test of English as a Foreign Language (TOEFL) consists
of given a word, choosing from four alternative words the most similar. The LSA
and the RI were both evaluated on this dataset. The LSA choices were determined
by computing cosines between the vector for the given word and each of the four
alternatives, choosing the word with the highest cosine. LSA achieved human-level
scores of 64.4% accuracy, and RI achieved similar scores between 64.5% and 67%. This
is close to human scores, since a large sample of applicants who took the tests averaged
an accuracy of 64.5% on the same questions.

Word embeddings are typically evaluated in terms of semantic and syntactic reg-
ularities (Mikolov et al., 2013c), which are captured by different word analogies. For
instance, to evaluate how well the embeddings capture plurals, an analogy can be for-
mulated, such as: “the word apple is similar to apples in the same sense that car is
similar to cars”, which can be evaluated by a simple equation:

W(“apple”)−W(“apples”) = W(“car”)−W(“cars”) (3.9)

where W(x) corresponds to embedding for the word x. The equation is equivalent to:

W(“apple”)−W(“apples”) + W(“cars”) = W(“car”) (3.10)
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Model Semantic Syntactic Average
NPLM 23% 53% 38%
CBOW 24% 64% 44%
Skip-gram 55% 59% 52.5%

Table 3.1: NPLM, Skip-Gram and CBOW accuracy in semantic and syntactic regular-
ities.

The vector X = W(“apple”) + W(“apples”) - W(“car”) is computed. Then, the eval-
uation procedure consists in finding, among all the generated vectors, the one that
maximizes the cosine similarity with X. If that vector corresponds to the word “cars”
the analogy is considered correct.

Many other types of regularities can be formulated and evaluated. Mikolov et al.
(2013a) compared the NPLM, Skip-Gram and CBOW in terms of semantic and syn-
tactic regularities, results in terms of accuracy and averaged accuracy are presented in
Table 3.1.

Extrinsic

The most popular method of extrinsic evaluation is probably the incorporation of
word clusters as features in NLP supervised learning tasks. The features representing
a word class help the algorithm to generalize beyond the training examples used during
the learning process. This approach has been applied in many different NLP and IE
tasks. For instance, Miller et al. (2004) used word-clusters in a supervised approach
for performing NER. The system incorporated word cluster membership as features.
Turian et al. (2010) make an extensive evaluation of the impact of incorporating word
clusters and word embeddings in NLP systems for the tasks of NER and chunking. The
results show that these word representations improve the accuracy of state-of-the-art
supervised baselines.

Sun et al. (2011) trained an SVM classifier for relationship extraction, adding word-
clusters as additional features. The results show that when combined with certain
features, word clusters can improve the performance of the classifier.

Koo et al. (2008) evaluated dependency parsers with lexical features that incor-
porate word clusters, demonstrating that it achieved substantial improvement over a
competitive baseline.
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3.6 Conclusion

This chapter introduced existing approaches to capturing the semantics of a word
based on the distributional hypothesis, i.e., assuming that similar words are used in
similar contexts. Three main approaches were described: generating classes of words
through clustering, factorization methods of co-occurrences counts, and language mod-
els based on neural networks.

Inducing word classes through word clustering was one of the first approaches to
represent the semantics of a word, the Brown clustering algorithm being one of the
most popular approaches. The grouped words, representing the class of a word, have
proven to be useful features in different NLP supervised learning tasks.

Approaches based on co-occurrence matrices, such as SVD and LSA, generate a vec-
tor for each word, leveraging on the global statistics of co-occurrence between words
and contexts. The generated vectors are somehow interpretable, since each dimen-
sion represents a context associated with the word. Nevertheless, the vectors do not
capture relationships between words, such as genre or plural, only word similarity. A
problem with co-occurrence matrices approaches is sparsity and the huge dimensions
of the generated vectors. Also, the process of generating such vectors involves choosing
between many different techniques to construct the matrix. Sahlgren (2006), Turney
and Pantel (2010), and Kiela and Clark (2014) describe several of these techniques
and detail design decisions regarding choice of context types, weighting schemas, and
similarity measures.

Approaches based on neural networks learn word vectors trough backpropagation.
They do not make use of global co-occurrence statistics. Even if the co-occurrence
counts were already computed by another process, neural networks approaches still
have to go through every possible context window in a given corpus. Although lower
in dimension, when compared with vectors generated from matrix approaches, the
dimensions in each word embedding vector are not easy interpretable. The most recent
approaches scale with the corpus size, and word vectors induced by them are good at
capturing complex patterns beyond simple word similarity.

Of all the approaches, word embeddings are the most promising. This approach is
used by the bootstrapping relationship extraction system to be detailed in Chapter 5.
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MinHash-based Relationship

Classification

The MinHash-based Semantic Relationship Classifier (MuSICo), is the method for
large-scale relationship extraction based on nearest neighbour classification (k-NN) that
I propose in this dissertation. This chapter starts by introducing the two techniques
that are the foundations for the classifier: Min-Hash and Locality-Sensitive Hashing.
Next, it describes how the classifier was built and the results of validation experiments
performed with English and Portuguese datasets.

4.1 Min-Hash

The Min-Hash technique was first introduced in the seminal work of Broder (1997),
where it was successfully applied to the task of detecting duplicate Web pages. Given a
vocabulary Ω of size D, that is, the set of all possible representative elements occurring
in a collection of documents and two sets, A and B, where:

A,B ⊆ Ω = {1, 2, . . . , D} (4.1)
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The Jaccard similarity coefficient between the sets of elements is given by the ratio of
the size of the intersection between A and B, to the size of the union of both datasets,
as show in Formula 4.2:

Jaccard(A,B) = |A ∩B|
|A ∪B|

= |A ∩B|
|A|+ |B| − |A ∩B| (4.2)

Calculating the similarity between two sets, using the Jaccard similarity, requires
computations in the order of n2, since every element in set A has to be compared
with every other element in set B. However, suppose that a random permutation π is
performed on the ordering considered for the elements in the vocabulary Ω:

π : Ω −→ Ω

An elementary probability argument shows that the Jaccard similarity can be estimated
from the probability of the first (i.e., the minimum) values of the random permutation
π, for sets A and B, being equal, given that the Jaccard coefficient is the number of
common elements to both sets over the number of elements that exist in at least one
of the sets:

P (min(A) = min(B)) = |A ∩B|
|A ∪B|

= Jaccard(A,B)

After the creation of k minwise independent permutations (i.e., π1, π2, . . . , πk) one
can efficiently estimate Jaccard(A,B) as Ĵ(A,B), without bias, as a binomial distri-
bution. Equation 4.3 shows the expected value of the binomial distribution used for
estimating the Jaccard coefficient from the k random permutations:

Ĵ(A,B) = 1
k

k∑
j=1

1, min(πk(A)) = min(πk(B))
0, otherwise

(4.3)
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For larger k, the estimation Ĵ(A,B) approximates Jaccard(A,B). Equation 4.4 shows
the corresponding variance for the distribution, which decreases for larger values of k:

Variance(Ĵ(A,B)) = 1
k

Ĵ(A,B)
(
1− Ĵ(A,B)

)
(4.4)

In practice, the πk permutations are achieved by applying k hashing functions to each
element of a given set S. These transform each element of the set into a representation
which allows the applications of an ordering function over the elements. After applying
the hashing schema and ordering the elements, only the element whose hashing value
is the minimum is kept. Repeating this process for k different hashing functions,
hkmin(S), results in k min-hash values. Each document is then represented by a min-
hash signature, that is, a k-size vector containing all the min-hash values, that is, a
min-hash value for each hashing function.

4.2 Locality-Sensitive Hashing

Locality-Sensitive Hashing (LSH) is a technique to reduce the dimensionality of
data. This technique hashes input objects in such a way that similar objects are stored
with high probability in the same bucket (Gionis et al., 1999).

Each object to be stored in the LSH structure, in this case a vector of min-hash
signatures, is split into L smaller chunks, composed by n min-hash signatures, as shown
in Figure 4.1a. Each chunk is then indexed into L different hash-tables, where the key
is an n-chunk from the object and the value is the full min-hash signature of the object,
as shown in Figure 4.1b.

The size k of the min-hash signature of an object and the number of bands L, must
follow the constrain that k mod L = 0. The idea behind this schema is that objects
with a common sub-structure, and therefore with equal min-hash signatures, are going
to be hashed into the same bands. Given any object, similar objects can be found by
retrieving objects that were hashed into the same bands.
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minhash1 minhash2 minhash3 minhash4 minhash5 minhash6 minhashk
…

Band1

Band0

(a) A min-hash signature vector representing an object.

minhash1 minhash2 minhash3

Band0 BandL

minhash1 minhash2 minhash3 minhash4 minhash5 minhash6 minhashk
…

minhash4 minhash5 minhash6

Band1

(b) LSH Bands indexing chunks of min-hash signatures of objects.

Figure 4.1: Locality-Sensitive Hashing schema for storing a vector of min-hash signa-
tures in different bands.
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Noam_,oam__ ,am_C_,m_Ch_,_Cho_,Chom_,homs_,omsk_,msky_,sky__,ky_i_,
y_is_,_is__,is_a_,s_a__,_a_p_,a_pr_,_pro_,prof_,rofe_,ofes_,fess_,
esso_,ssor_,sor__,or_a_,r_at_,_at__,at_M_,t_MI_,_MIT_

Figure 4.2: A 5-gram character representation for the sentence Noam Chomsky is a
professor at MIT

4.3 MuSICo

By relying on machine learning algorithms, a statistical model can be inferred
from annotated examples containing different relationships types. Then, given a new
sentence, the statistical model can make the decision of whether the sentence holds a
certain relationship type.

Another possibility is, instead of learning a complex statistical model, finding the
most similar relationship instances in a database and using these similarities to make
the decision of whether the sentence holds a certain relationship type. That is, the
relationship expressed in the sentence can be classified according to the relationship
type of the most similar relationship instances in a database. A naive approach to
find the most similar pairs of relationship instances in a database of size N , with a
given relationship r, involves computing all possible r with N pair similarities, which
quickly becomes a bottleneck for large N . Even if the task is done in a parallel fashion,
overcoming this complexity is necessary to achieve good scalability.

MuSICo is a system that compares the most similar relationship instances in an
efficient way, given a new relationship instance. The similarity comparison of relation-
ship instances is calculated with the Jaccard similarity, which estimates the similarity
between any two given objects A and B by comparing its constituent parts. If A and
B are textual documents, a common way is to transform each document into a set of
shingles. A n-shingle (or n-gram) of a document is a sequence of n characters that
appear in the document (see Figure 4.2).

If the set of n-grams from a document x is given by shingles(x), then comparing
A with B involves |shingles(A)| × |shingles(B)| comparison operations. This can be
too computationally intensive, especially if the sets a very large number of elements.
Moreover, given a task of trying to estimate the similarity between a given document
and each document in a large collections of documents, the comparison operation has

69



4. MinHash-based Relationship Classification

to be done between all the documents in the collection.
MuSICo approximates the Jaccard coefficient through a Min-Hash procedure, and

leveraging the LSH method for rapidly finding the k-Nearest-Neighbours (k-NN) with
most similar relationship instances. The min-hash signatures are generated from a set
of features, extracted from the sentences, namely: character quadgrams, prepositions,
verb forms in the past participle tense, infinitive forms of verbs, and relational patterns.

With traditional k-NN classifiers, training takes virtually zero computation time,
since it just involves storing the example instances, but classification is highly demand-
ing. MuSICo, by relying on a LSH technique for indexing the training instances, allows
classification to be made efficiently, since it only has to measure the similarities of a
small set of candidate instances. The technique leverages on the min-hash signatures
to compress the relationship instances and preserve the expected similarity of any pair
of instances.

MuSICo operates in two phases. The indexing phase involves processing an anno-
tated dataset of relationships instances, and storing them in LSH bands. The classi-
fication phase classifies a new relationship instance based on the examples indexed in
the LSH bands. A textual analysis step is common to both phases.

4.3.1 Textual Analysis

MuSICo represents each relationship instance as a set of features, by performing a
textual analysis of the sentence. This analysis starts by identifying three contexts:

BEF-BET: Words occurring before the first entity and between the two entities.

BET: Words between the two entities that constitute the binary relationship.

BET-AFT: Words occurring between the two entities and after the second entity.

For instance, given the following sentence, where the related entities are in bold:

The micropump is fabricated by anisotropic etching, considering orientation.

MuSICo would identify the following contexts:

BEF-BET: The micropump is fabricated by
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BET: is fabricated by

BET-AFT: is fabricated by anisotropic etching, considering orientation.

This representation follows the observation that a relationship between two named-
entities is generally expressed using only words that appear in one of the three contexts
defined above (Bunescu and Mooney, 2005a). For each context, MuSICo considers
lexical and syntactic features. The lexical features are essentially based on quadgrams
of characters. The syntactic features are derived from PoS-tags and include:

• prepositions;

• verb forms in the past participle;

• infinitive forms of verbs, except auxiliary verbs;

• relational patterns corresponding to: a verb, followed by nouns, adjectives, or
adverbs, and ending with a preposition.

The relational pattern is inspired by one of the features used in the ReVerb OIE system
by Fader et al. (2011). The described features are extracted from the three contexts
(i.e., the BEF-BET, BET, and BET-AFT).

MuSICo tries to identify the presence of the passive voice when it captures a re-
lational pattern in a relationship. The idea is to use the presence or absence of the
passive voice to detect the direction of the relationship. The technique to detected
the passive is based on PoS-tags. Concretely, it considers any form of the verb to be,
followed by a verb in the past tense or the past participle and ending in the word by,
which is than followed by one of the named-entities or nominals of the relationship.
This constraint is relaxed, allowing for the occurrence of adverbs, adjectives or nouns
between the two verbs and the preposition by. For instance:

Sun Microsystems was acquired by business software giant Oracle.

The software company Netscape, which was later bought by AOL.
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Example

Each generated feature is represented by a string, and is assigned to a globally
unique identifier associating it to the context from where it was extracted. For example,
given the sentence:

“The software company Netscape was bought by AOL.”

besides characters quadgrams, the following features are also generated by MuSICo:

• by PREP BEF-BET, by PREP BET

• bought BEF-BET, bought BET

• buy VVN BEF-BET, buy VVN BET

• was bought by RVB PASSIVE BEF-BET

• was bought by RVB PASSIVE BET

4.3.2 Indexing

The indexing operation consists of extracting the described features from a dataset
of annotated relationship instances, calculating the min-hash signatures for each in-
dividual feature and indexing the signatures in the LSH bands. Given an annotated
dataset of relationship instances, a complete outline of the indexing operation is as
follows:

1. Identify, for each sentence, the three contexts.

2. Extract from each context: sets of character quadgrams, prepositions, verb forms
in the past participle tense, infinitive forms of verbs, and relational patterns.

3. Compute the min-hash signature vector for each relationship instance, based on
the features extracted in the previous step, as described in 4.1. After this, each
relationship instance is represented by a min-hash signature made from k min-
hashes.

4. Split the min-hash signature vector into bands, and hash each vector into the L
bands, as described in 4.2.
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4.3.3 Classification

Once the database is populated with examples of indexed relationship instances,
the classification operation, given a target sentence, is as follows:

1. Identify the three contexts and extract from each a set of features.

2. Compute the min-hash signatures based on the set of extracted features.

3. Retrieve relationship instances from the collection of examples, having at least
one identical LSH band.

4. Estimate the Jaccard similarity coefficient of the instances with the target in-
stance using the available min-hash signatures.

5. Order the retrieved instances by their similarity towards the target instance.

6. Assign the relationship type based on the weighted votes from the top-k most
similar instances.

The classification is computationally efficient. The similarity is only computed
between the target instance and the retrieved candidates, using the complete min-
hash signatures to approximate the Jaccard similarity coefficient. In this way, the
classifier avoids the pairwise similarity comparisons against all example relationship
instances in the database. This classification procedure essentially corresponds to a
weighted k-NN classifier, where each example instance has a weight corresponding to
its similarity towards the instance being classified, and where the more similar instances
have therefore a higher vote, in the classification, than the ones that are more dissimilar.

4.4 Evaluation

MuSICo was evaluated considering three configuration parameters: the size of the
min-hash signatures, the number of LSH bands, and the number k of nearest neighbours
which are considered in the classification.

The experiments involved datasets consisting of sentences where a specific type
of relationship is expressed or no relationship at all, considering popular datasets for
English and a Portuguese dataset gathered from Wikipedia and DBpedia.
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In the implementation of the minwise hashing scheme, each of the independent
permutations is a hashed value. Each of the k independent permutations is associated
with a polynomial hash function hk(x) that maps the members of Ω to distinct values.

In the experiments, the textual analysis involving part-of-speech tagging was per-
formed for the English dataset with the MorphAdorner NLP package (Burns, 2013).
The L bands in the LSH structure are implemented with MapDB, a persistence storage
structure developed by Kotek (2013)

A PoS-tagger for Portuguese was developed based on the OpenNLP (Morton et al.,
2005) software package and trained with morphologically annotated datasets for Por-
tuguese, namely, the CINTIL Corpus of Modern Portuguese (Barreto et al., 2006;
Branco and Silva, 2006) and Floresta Sintáctica (Afonso et al., 2002). The two datasets
were normalized into one by converting the representation formats to a simple tagset
following the work of Petrov et al. (2012).

4.4.1 Portuguese Dataset Creation

Wikipedia is a comprehensive resource that contains diverse content in many lan-
guages, Portuguese included. In Wikipedia, besides textual descriptions about concepts
and entities from different fields of knowledge, there is also structured information in
the form of infoboxes. An infobox is a manually-created table that holds the main
facts in the form of attributes and values for many Wikipedia articles, as in Figure 4.3.

Figure 4.3: Infobox on Ottis Redding in the Portuguese Wikipedia.
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Projects like DBpedia explored the automatic construction and the knowledge graphs
derived from facts expressed in infoboxes of Wikipedia pages in several languages,
including Portuguese (Lehmann et al., 2015).

The same facts are often expressed both in the text of Wikipedia articles and asso-
ciated infoboxes, and consequently, in derived resources like DBpedia. By combining
relationships expressed in DBpedia with articles from Wikipedia, where both entities
co-occur, we can collect large amounts of training data. For example, the article of the
Portuguese Wikipedia about the artist Ottis Redding contains the sentence:

Ottis Redding nasceu na pequena cidade de Dawson, Georgia
(in English: Ottis Redding was born in the small city of Dawson, Georgia)

The infobox of this article contains the attribute:

origem (i.e., origin) = Dawson, Georgia

and, hence, the DBpedia knowledge graph contains a relationship of the type origem
between the entities Otis Redding and Georgia.

By combining the information from DBpedia with phrases from Wikipedia arti-
cles, as in the above example, we automatically generate training data for extracting
origem relationships. This process can introduce noise: a pair of entities in a DBpedia
relationship may also co-occur in a sentence expressing a different relationship or no
relationship at all. However, it is expected that the large volume of data extracted in
this way compensates the noise present in the training data (Mintz et al., 2009).

The general procedure for generating a dataset of semantic relationships from
Wikipedia and DBpedia is thus the following:

1. Gather from DBpedia all the semantic relationships expressed among subjects
(i.e., Wikipedia pages) which correspond to persons, locations or organisations.

2. For each relationship, record the Wikipedia pages of the entities involved and
their type.

3. Extract all the sentences from the two Wikipedia pages associated with each of
the entities in the relationship.
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4. Filter the sentences gathered in the previous step, keeping only those where both
entities involved in a relationship are mentioned.

5. Keep the sentences gathered from this filtering process as relationship instances
of a given relationship type.

In step 3, to improve the coverage of the number of gathered examples, the filtering
process considers small variations on the entity names in the mapping from DBPedia
and in the Wikipedia article’s title, to the text in the sentences. Besides the original
names, the process also considers sequences of characters up to the first comma or
parenthesis, since many Wikipedia entities are disambiguated by adding more infor-
mation to the article’s title. For instance, although most of the sentences only refer the
state by Georgia, the Wikipedia page for the state of Georgia in the USA is identified
by Georgia (United States).

The procedure described above generates many sentences expressing the various
types of semantic relationships in DBpedia, which were in turn derived from infor-
mation in the infoboxes of Wikipedia. Many of the relationship types expressed in
the generated sentences correspond to slight variations of the same semantic concept.
For instance, given the following sentence, which expresses the DBpedia relationship
localizado-em (i.e., locatedInArea):

East Oak Lane é um bairro localizado em Philadelphia.
(in English: East Oak Lane is a neighbourhood located in Philadelphia.)

and the sentence where the DBpedia relationship capital is expressed:

Lisboa é a capital e a cidade mais populosa de Portugal.
(in English: Lisboa is the capital and the largest city of Portugal.)

although the two sentences are annotated with different relationship types, both are
variations of the same concept that can be generalized to localizado-em. Given this
observation, the different types of relationships present in DBpedia were mapped into 10
general relationships types. Table 4.1 details the mappings from DBpedia relationships
into a more generalized semantic concept.
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Relationship DBpedia Relationships

localizado-em
(located-in)

locatedInArea, archipelago, location, locationCity
locationCountry, municipality, subregion, federalState

district, region, province, state, county
map;campus, garrison, department, country

capitalCountry, city, capital, largestCity

origem-de (origin)
origin, birthPlace, foundationPlace, sourcePlace
nationality, residence, hometown, sportCountry

local-de-enterro-ou-
falecimento
(death-or-burial-place)

deathPlace, placeOfBurial

parte-de (part-of)

currentMember, pastMember, type
parentOrganisation, distributingCompany

broadcastNetwork, affiliation, university,
youthClub, party, pastMember,

team, associatedMusicalArtist, member

antepassado-de
(ancestor-of) parent, child

sucessor-de
(successor-of) successor, predecessor

pessoa-chave-em
(key-person-in)

keyPerson, president, leaderName
president, monarch, foundedBy

leader, leaderName, founder

influenciado-por
(influenced-by) influenced, doctoralAdvisor

parceiro (partner) spouse, partner

não-relacionado
(other) all the other relationships

Table 4.1: Mappings of DBpedia relationships into 10 general relationship types in the
created Portuguese Wikipedia dataset.
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Relationship Number of Examples
localizado-em (located-in) 46,236
origem-de (origin) 23,664
local-de-enterro-ou-falecimento (death-or-burial-place) 6,726
parte-de (part-of) 5,142
antepassado-de (ancestor-of) 266
sucessor-de (successor-of) 496
pessoa-chave-em (key-person-in) 355
influenciado-por (influenced-by) 147
parceiro (partner) 128
não-relacionado (other) 6,441

Table 4.2: Number of relationship instances gathered by distant supervision for the
Portuguese Wikipedia dataset.

During the mapping process, the order of the entities in some relationship types was
swapped in order to keep the semantics consistent with the other relationship instances
also mapped into the same generic relationship.

The mappings generated a dataset containing 10 different types of relationships,
as illustrated in Table 4.2. All the relationships consider the order of the arguments
in the relationship, they are asymmetric, except the relationships parceiro and não-
relacionado which are symmetric.

A small subset of the automatically generated training data was manually reviewed
to create a curated dataset for evaluation. During the review process it was found that
the distant supervision method achieved an accuracy of about 80% in assigning the
relationship type that is actually expressed in the sentence. This result is in agreement
with previous work of Garćıa and Gamallo (2011). Several problems were also found
concerning the segmentation of Wikipedia articles into sentences (e.g., it is common
to see phrases that include, at the beginning or end, words from the title section
immediately before the sentence). In the construction of the manually curated dataset
for the evaluation of results, all the identified problems were manually corrected.

Table 4.3 shows the statistical characterization of the subset of data which was man-
ually reviewed (i.e., column Test), as well as the sub-set of data which was not manually
reviewed (i.e., column Train), for the whole dataset. This dataset is available online at
http://dmir.inesc-id.pt/project/DBpediaRelations-PT_01_in_English.
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Train Test Total
# Sentences 97,363 625 97,988
# Terms 2,172,125 14,320 2,186,445
# Relationship Types 10 10 10
# Relationship Instances 89,054 547 89,601
# Named-Entities 70,716 838 71,119
Avg. sentence length (terms) 22.42 24.12 22.43
StDev. sentence length (terms) 11.39 11.00 11.39
Avg. instances/class 8,905.4 54.7 8,960.1
StDev. instances/class 14,109.33 64.18 14,172.38

Table 4.3: Statistical characterization of the Portuguese Wikipedia relationships
dataset.

4.4.2 Experiments with English Datasets

In the experiments considering English texts, MuSICo was evaluated with three
datasets containing relationship collections from different domains, which are com-
monly used as benchmarks (see a statistical characterization of the three datasets in
Table 4.4):

SemEval dataset (Hendrickx et al., 2010): consists of 10,717 sentences, annotated ac-
cording to 19 possible relationship types between two nominals, 9 non-symmetric
relations types, plus a label for denoting that no relationship is being expressed.
Compared with the other datasets , this dataset is well balanced among classes,
and is split into 8,000 instances for training and 2,717 for testing.

Wikipedia dataset (Culotta et al., 2006): consists of paragraphs from 441 Wikipedia
pages, containing annotations for 4,681 relation mentions of 53 different relation
types like job-title, birth-place, or political-affiliation. The dataset is split into
training and testing subsets, with about 70% of the paragraphs for testing, and
the remaining 30% for training. In the Wikipedia dataset, the distribution of the
examples per class is highly skewed: job-title is the most frequent relation (379
instances), whereas grandmother and discovered have just one example in the
dataset. Moreover, although the full dataset contains annotations of 53 different
relationship types, only 46 types are included in both the training and testing
subsets. Still, of these 46 relation types, 14 of them have less than 10 examples.
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SemEval Wikipedia AImed
Train Test Train Test Data

# Sentences 8,000 2,717 2,199 926 2,202
# Terms 137,593 46,873 49,721 20,656 75,878
# Relationship types 19 19 47 47 2
# Relation instances (except other) 6,590 2,263 15,963 6,386 1,000
# Nominals 16,001 5,434 5,468 2,258 4,084
Avg. sentence length (terms) 119.8 119.4 177.2 172.8 184.2
StDev. sentence length (terms) 45.0 44.4 104.5 100.1 98
Avg. instances/class 421 143 295.6 135.9 1 961.5
StDev. instances/class 317.5 105.5 1707.3 728.2 1 372.5
Max. instances/class (except other) 844 22 268 113 1 000
Min. instances/class 1 1 1 1 1 000

Table 4.4: The English datasets used in the MuSICo evaluation.

Therefore, in the experiments with the Wikipedia dataset, only a subset of 46
relationship types was considered. Additionally, the direction of the relationship
was disregarded, only the problem of predicting the relationship type was con-
sidered (i.e., classifying according to one of the 46 semantic relationship types,
or as other). Of all the three datasets, this was the one that least fitted the gen-
eral approach for modelling the relationship extraction task, requiring significant
adaptations.

AImed dataset (Bunescu and Mooney, 2005a): consists of 225 MEDLINE abstracts,
200 of which describing interactions between human proteins. There are 4,084
protein references and approximately 1,000 tagged interactions. In this dataset,
there is no distinction between genes and proteins, and the relations are sym-
metric and of a single type. The experiments were made with a 10-fold cross
validation methodology, using the same splits as in the study that originally used
this dataset (i.e., the paper referenced above).

Results

The evaluation experiments used the full set of features described in subsection 4.3.1,
with different parameters for the minwise hashing-based scheme:

• k nearest neighbours considered: 1, 3, 5 or 7;
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Sigs./ 1 kNN 3 kNN 5 kNN 7 kNN
Bands P R F1 P R F1 P R F1 P R F1

Se
m

E
va

l

200/25 0.662 0.622 0.641 0.683 0.642 0.662 0.698 0.652 0.674 0.698 0.637 0.666
200/50 0.662 0.621 0.640 0.683 0.643 0.662 0.698 0.651 0.673 0.698 0.636 0.666
400/25 0.664 0.636 0.650 0.685 0.668 0.676 0.708 0.672 0.690 0.691 0.667 0.679
400/50 0.663 0.635 0.649 0.684 0.664 0.674 0.708 0.674 0.690 0.694 0.670 0.682
600/25 0.657 0.631 0.644 0.677 0.660 0.669 0.697 0.674 0.685 0.695 0.660 0.677
600/50 0.657 0.631 0.644 0.676 0.658 0.667 0.699 0.678 0.688 0.694 0.664 0.678
800/25 0.654 0.630 0.642 0.675 0.656 0.665 0.694 0.662 0.678 0.696 0.658 0.677
800/50 0.654 0.632 0.643 0.677 0.658 0.667 0.698 0.665 0.681 0.696 0.658 0.676

W
ik

ip
ed

ia

200/25 0.410 0.336 0.369 0.434 0.335 0.378 0.439 0.310 0.363 0.489 0.323 0.389
200/50 0.409 0.336 0.369 0.435 0.336 0.379 0.440 0.310 0.364 0.489 0.321 0.387
400/25 0.453 0.350 0.394 0.472 0.354 0.405 0.507 0.348 0.413 0.485 0.323 0.388
400/50 0.450 0.349 0.393 0.468 0.354 0.403 0.503 0.350 0.412 0.509 0.328 0.399
600/25 0.419 0.344 0.378 0.439 0.352 0.391 0.492 0.364 0.419 0.522 0.365 0.430
600/50 0.419 0.343 0.377 0.444 0.354 0.394 0.485 0.353 0.408 0.532 0.353 0.425
800/20 0.416 0.344 0.377 0.431 0.348 0.385 0.493 0.351 0.410 0.513 0.343 0.411
800/50 0.419 0.345 0.378 0.433 0.350 0.387 0.515 0.346 0.414 0.517 0.338 0.409

A
Im

ed

200/25 0.405 0.545 0.465 0.430 0.509 0.466 0.480 0.484 0.482 0.507 0.460 0.482
200/50 0.405 0.545 0.465 0.430 0.509 0.466 0.480 0.484 0.482 0.507 0.460 0.482
400/25 0.420 0.589 0.491 0.451 0.554 0.497 0.481 0.524 0.501 0.516 0.502 0.509
400/50 0.420 0.588 0.490 0.455 0.561 0.502 0.484 0.529 0.505 0.519 0.505 0.512
600/25 0.409 0.605 0.488 0.445 0.571 0.500 0.475 0.529 0.500 0.511 0.513 0.512
600/50 0.409 0.605 0.488 0.445 0.571 0.500 0.475 0.530 0.501 0.511 0.513 0.512
800/25 0.416 0.613 0.496 0.453 0.595 0.514 0.481 0.547 0.512 0.490 0.512 0.501
800/50 0.418 0.614 0.498 0.454 0.596 0.515 0.482 0.545 0.511 0.489 0.514 0.501

Table 4.5: Precision (P), Recall(R) and F1 scores obtained with various configurations
of MuSICo in the English datasets.

• size of the min-hash signatures: 200, 400, 600 or 800 integers;

• number of LSH bands: 25, 50.

The performance was measured in terms of macro-averaged precision, recall and
F1-scores over the relationship labels, apart from the not-related/other labels. This
corresponds to calculating macro-averaged scores over 18 classes in the case of the
SemEval dataset, over 46 classes in the case of the Wikipedia dataset, and over the
single is-related class in the AImed dataset.

Table 4.5 presents the obtained results, showing that using the 5 or the 7 nearest

81



4. MinHash-based Relationship Classification

In
st

an
ce

s
A

sy
m

m
et

ri
ca

l
Sy

m
m

et
ri

ca
l

R
el

at
io

ns
hi

p
D

ir
ec

ti
on

(t
ra

in
/t

es
t)

P
re

ci
si

on
R

ec
al

l
F

1
P

re
ci

si
on

R
ec

al
l

F
1

C
au

se
-E

ffe
ct

(e
1,

e 2
)

34
4/

13
4

0.
84

3
0.

84
3

0.
84

3
0.

79
8

0.
90

2
0.

84
7

(e
2,

e 1
)

65
9/

19
4

0.
73

5
0.

90
2

0.
81

0

C
om

po
ne

nt
-W

ho
le

(e
1,

e 2
)

47
0/

16
2

0.
57

2
0.

75
9

0.
65

3
0.

62
8

0.
67

0
0.

64
8

(e
2,

e 1
)

15
0/

12
9

0.
60

9
0.

52
0

0.
56

1

En
tit

y-
D

es
tin

at
io

n
(e

1,
e 2

)
84

4/
29

1
0.

74
4

0.
91

1
0.

81
9

0.
74

7
0.

90
1

0.
81

7
(e

2,
e 1

)
1/

1
1.

00
0

0.
00

0
0.

00
0

En
tit

y-
O

rig
in

(e
1,

e 2
)

56
8/

21
1

0.
78

9
0.

81
5

0.
80

2
0.

75
6

0.
79

5
0.

77
5

(e
2,

e 1
)

14
8/

47
0.

66
7

0.
72

3
0.

69
4

Pr
od

uc
t-

Pr
od

uc
er

(e
1,

e 2
)

32
3/

10
8

0.
67

0
0.

60
2

0.
63

4
0.

67
3

0.
58

9
0.

62
8

(e
2,

e 1
)

39
4/

12
3

0.
65

4
0.

56
9

0.
60

9

M
em

be
r-

C
ol

le
ct

io
n

(e
1,

e 2
)

78
/3

2
0.

77
8

0.
43

8
0.

56
0

0.
76

7
0.

77
7

0.
77

2
(e

2,
e 1

)
61

2/
20

1
0.

77
6

0.
79

1
0.

78
3

M
es

sa
ge

-T
op

ic
(e

1,
e 2

)
49

0/
21

0
0.

75
1

0.
73

3
0.

74
2

0.
77

8
0.

77
8

0.
77

8
(e

2,
e 1

)
14

4/
51

0.
75

0
0.

70
6

0.
72

7

C
on

te
nt

-C
on

ta
in

er
(e

1,
e 2

)
37

4/
15

3
0.

72
6

0.
77

8
0.

75
1

0.
70

6
0.

80
2

0.
75

1
(e

2,
e 1

)
16

6/
39

0.
62

7
0.

82
1

0.
71

1

In
st

ru
m

en
t-

A
ge

nc
y

(e
1,

e 2
)

97
/2

2
0.

42
9

0.
54

5
0.

48
0

0.
60

5
0.

66
7

0.
63

4
(e

2,
e 1

)
40

7/
13

4
0.

61
5

0.
67

9
0.

64
5

O
th

er
—

1
41

0/
45

4
—

—
—

0.
44

2
0.

29
3

0.
35

2
M

ac
ro

-a
ve

ra
ge

—
—

0.
70

8
0.

67
4

0.
69

0
0.

71
8

0.
76

4
0.

74
0

Ta
bl

e
4.

6:
R

es
ul

ts
ob

ta
in

ed
by

M
uS

IC
o

fo
r

ea
ch

re
la

tio
ns

hi
p

ty
pe

in
th

e
Se

m
Ev

al
da

ta
se

t.

82



4.4 Evaluation

neighbours, instead of just the most similar example, results in an increased perfor-
mance for the SemEval and Wikipedia datasets, while a better F1 score was obtained
for the AImed dataset when considering the 3 nearest training examples.

Table 4.6 presents per-class results in the case of the SemEval dataset, considering
the configuration that achieved the best performance in the results from Table 4.5
(i.e., a configuration using the 5 nearest neighbours, with a min-hash size of 400,
and with 50 bands in the LSH method). Besides the results on the regular SemEval
classification setting, involving relation types with direction, a setting that ignores
the relationship directions (i.e., considering 8 different relationship types) was also
evaluated. The results show that some classes, such as cause-effect, are relatively easy
to classify, whereas classes such as instrument-agency are much harder. For the class
corresponding to entity-destination(e1,e2), the dataset only contains one instance for
training and one instance for testing.

Other features representations for the relationship instances have been considered,
such as:

• using different textual windows and different n-gram sizes;

• n-grams of tokens, after a lemmatization process;

• WordNet-based features.

However, the features described before achieved the best trade-off between accuracy
and computational performance.

Comparison with other approaches

The best F1 score with MuSICo was 0.69. This is in line with the state-of-the-art,
where the best participating system in the SemEval 2010 task achieved a performance
of over 0.82, whereas the second best system reported an F1 score of 0.77, and the
median F1 score was of 0.68.

Table 4.7 shows the F1 scores of the top ranked participants and summarizes the
features employed by each participant system. Analysing in detail the components
of the participating systems, most used a variety of features built by relying on ex-
ternal resources. The winning system, by Rink and Harabagiu (2010), derived in
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4. MinHash-based Relationship Classification

F1 Approach Syntactic
Dependencies PoS-tags External

Resources
0.82 2 SVM classifers YES YES YES
0.77 4 Kernels (SVM) NO YES YES
0.77 Logistic Regression NO NO YES
0.75 SVM YES YES YES
0.69 MuSICo NO YES NO

Table 4.7: MuSICo versus the best SemEval 2010 Task 8 systems.

total 45 different features from external resources such as WordNet (Miller, 1995),
VerbNet (Schuler, 2005), Levin Verb Classes (Levin, 1993), Google’s N-gram collec-
tion (Michel et al., 2010). The system also uses features generated from semantic
parsing (Johansson and Nugues, 2007), which identify predicates in text and their se-
mantic roles, and also from syntactic dependencies and PoS-tags. The system consists
of two classifiers, one for detecting the relationship type and another for the direction
of the relationship.

The second best participant, Tymoshenko and Giuliano (2010), relied on shallow
syntactic processing (i.e., PoS-tags) and semantic information derived from the Cyc
knowledge base (Lenat, 1995), providing different sources of information which are
represented by different kernel functions. The final system is based on a linear combi-
nation of four kernels.

The third best participant, Tratz and Hovy (2010), used more simpler and straight-
forward approach, consisting of a single multi-label Logistic Regression classifier using
a large number of boolean features. The features were derived from external resources,
such as the U.S. Census 2000’s most common names and surnames list, WordNet, Ro-
get’s Thesaurus (Jarmasz and Szpakowicz, 2003), and Web 1T N-gram (Thorsten Brants,
2006). Interestingly, this system, although not relying on any syntactic features, still
achieved the 3rd place. Nevertheless, the authors claim to use the output of a in-house
noun compound interpretation system as features, which associates semantic topics to
nouns.

The fourth best participant, Chen et al. (2010), relied on PoS-tags, syntactic depen-
dencies and features derived from WordNet, and applying a one-versus-all approach,
training 10 SVM classifiers on for each relationship type.

All the top-ranked systems in the SemEval evaluation task derived features by

84



4.4 Evaluation

F1 Kernel Type Syntactic
Dependencies PoS-tags

0.56 All-Paths Graph Kernel YES NO
0.55 Shallow Linguistic Kernel NO YES
0.52 MuSICo NO YES

Table 4.8: Comparison of MuSICo with other approaches for the AImed dataset.

relying on different external resources and tools, and all systems involved learning a
statistical model, by using an SVM with complex kernels or by relying on multi-class
logistic regression.

With the AImed dataset, Tikk et al. (2010) compared different kernel-based meth-
ods, which quantify the similarity of two instances through counting the similarities
of their substructures, with a common cross-validation methodology. Table 4.8 shows
the results for different kernels with the AImed dataset. The All-Paths Graph Kernel
by Airola et al. (2008) achieves an F1 score of 0.56. The Shallow Linguistic Kernel,
which is essentially a simplified version of the sub-sequence kernel from Bunescu and
Mooney (2005a), combining words and PoS-tags, achieves an F1 score of 0.55. MuSICo
has only slightly inferior results, with an F1 score of 0.52.

The All-Paths Graph Kernel (Airola et al., 2008) is based on a weighted directed
graph that consists of two unconnected sub-graphs, one representing the dependency
structure of the sentence, the other representing the sequential ordering of the words.
Weights are determined by dependency weights, which are the higher the shorter the
distance of the dependency to the shortest path between the candidate entities is.

Compared to other supervised approaches for relationship extraction, MuSICo is
based on a much simpler set of features, which are common across domains and mostly
language independent. PoS-tags are necessary for computing some of the features, but
PoS-tagging can be made efficiently and accurately for most languages (Petrov et al.,
2012). Comparing with other approaches over the same datasets, this approach directly
supports multi-class and on-line learning while still attaining competitive results.

Processing Times

A direct comparison against other approaches, in terms of processing times, cannot
be easily made. This would require a common set of tools for performing feature
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4. MinHash-based Relationship Classification

extraction, as well as exactly the same implementations of the different algorithms.
All kernel-based approaches use an SVM as a classifier, which typically involve three

main steps:

1. Generate the linguistic structures to be used within the kernel, for instance, cal-
culating the syntactic dependencies or computing features derived from external
knowledge resources.

2. Determine the substructures used by the kernel, and compute pairwise similari-
ties.

3. Apply the SVM algorithm.

The approach used by MuSICo is significantly different, relying mostly on character
quadgrams and PoS-tagging. Compared to syntactic parsing, PoS-tagging can be 20
to 30 times faster (Akbik and Löser, 2012; Wu and Weld, 2010) for the task of RE.
Running on a single thread, MuSICo achieves an F1 score of 0.69 with the SemEval
dataset taking 172 seconds to process all three stages (i.e., feature extraction, indexing
and classification) considering the 5 nearest neighbours, min-hash signatures of size
400, and 50 LSH bands.

For the AImed dataset, and without considering feature extraction Tikk et al. (2010)
reports times of approximately 66.4 and 10.8 seconds, for training and testing, using
the Shallow Linguistic Kernel, and times of approximately 4,517.4 and 3.7 seconds for
training and testing, using the All-Paths Graph Kernel. MuSICo, using a single thread,
takes on average about 161 seconds to process all three stages for each AImed fold,
considering 3 nearest neighbours, min-hash signatures of size 800 and 50 bands.

The charts on Figure 4.4 present the processing times in seconds for each processing
stage: feature extraction, indexing and classification, for all the parameter configura-
tion presented in Table 4.5. For the AImed dataset, the charts show the average time
for 1 fold.

The total processing time involved in each experiment naturally increases with the
size of the dataset being considered. The time needed to perform feature extraction is
independent of the LSH configuration and min-hash signatures size being used. The
results indicate that these values represent a significant amount of the total processing
time that is involved in each experiment. The results also show that the indexing
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times increase significantly as the size of the min-hash signatures gets larger, since
more hash functions need to be computed, and more min-hash values have to be stored
and compared. Augmenting the number of bands in turn increases the classification
time, since the number of hash tables where we have to look for candidate instances,
and possibly also the number of candidates increases.

Scalability

The Min-Hash scheme, the core of MuSICo’s architecture, was initially developed
for detection of duplicate web pages in a search engine system (Broder et al., 2000).
Therefore it was designed with scalability in mind. I also carried experiments to eval-
uate the scalability of MuSICo regarding the training and testing phases.

The first experiment evaluated the scalability of MuSICo when populating the
database of relationships, i.e., indexing the training data. In this experiment, I con-
sidered different sizes of the SemEval dataset, specifically, 25%, 50%, 75% and 100%.
For each partition the time taken in performing feature extraction and indexing was
measured. Feature extraction corresponds to computing n-grams of characters, and
performing part-of-speech tagging. The indexing phase involves only calculating the
min-hash signatures for relationship features and indexing them in the different bands.

Figure 4.5a shows the processing time of as a function of the size of the dataset.
Most of the processing time in the indexing phase is spent on feature extraction, as
expected. Nevertheless, in terms of processing time, it increases linearly with dataset
size.

Another experiment was carried to evaluate the scalability of the classification phase
on the full SemEval training dataset (see Figure 4.5b). The database of LSH bands
was populated with all the relationships part of the training set. As in the previous
experiment, the classification time was measured for different partition sizes of the
test dataset of SemEval, specifically, 25%, 50%, 75% and 100%. As expected, most
of the processing time is also spent in feature extraction, but the processing time in
classification grows linearly with the dataset.

Both training and classification times were measured with the configuration that
achieved the best performance on SemEval in terms of F1 score, concretely, min-hash
signatures of size 400 and 50 LSH bands and considering the 5 nearest neighbours.
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Figure 4.4: MuSICo processing times, in seconds, for each dataset and configuration.
The numbers in bold, at the top of each graph, represent the size of the min-hash
signatures and the number of bands.
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As the graphics in Figure 4.5 show, processing time in both the indexing and the
classification phase grows linearly with dataset size, which demonstrates the linear
scalability of MuSICo’s approach to relationship extraction. Most of the processing
time is spent in feature extraction; this can be improved if the feature extraction is
performed in parallel, leveraging on multi-core CPUs.

4.4.3 Experiments with Portuguese Datasets

MuSICo was also evaluated for Portuguese, using a dataset of Portuguese semantic
relationships created by relying on distant supervision over the Portuguese Wikipedia
and DBpedia. Also, as the part-of-speech (PoS) tagging component in MuSICo is lan-
guage specific, a PoS-tagger for Portuguese was constructed based on a morphologically
annotated Portuguese corpus.

Results

MuSICo was evaluated with the dataset generated from the Wikipedia/DBpedia
for Portuguese in two experiments. The first experiment left out of the indexing phase
the relationship instances that were manually reviewed, and these were later used for
evaluation. The second experiment considered the whole dataset, with 25% of the
instances for each relationship type held-out in the indexing phase to be later used for
evaluation.

As with the previous experiments with English datasets of semantic relationships,
experiments with a Portuguese dataset also considered different features for relationship
representation and configuration parameters:

• Relationship features:

– quadgrams of characters;

– verbs;

– prepositions;

– relational patterns;

• k nearest neighbours considered: 1, 3, 5 or 7;
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Set Features
I Quadgrams

II Quadgrams
Verbs

III
Quadgrams
Verbs
Prepositions

IV

Quadgrams
Verbs
Prepositions
Relational Patterns

Table 4.9: Groups of features used in experiments with the Portuguese dataset.

• size of the min-hash signatures: 200, 400, 600 or 800 integers;

• number of LSH bands: 25, 50;

Table 4.10 describes the results for the first experiment. The features corresponding
to each set on the left of the table are described in Table 4.9. The results show that
the combination of character quadgrams, verbs, prepositions, and relational patterns,
provides the best classification performance. Also, using the 5 or 7 first neighbours,
rather than just the most similar relationship instance, improves the performance.

Table 4.11 presents the obtained results for the second experiment, showing that the
method using distant supervision, along with the proposed classifier, allows extracting
relationships with an F1 score of 0.56. We can also see that the values of the different
evaluation metrics are slightly lower for tests with 25% of the dataset. This indicates
that measured results with the manually annotated collection may be regarded as an
upper limit to an approximation of the true accuracy of the system.

The results of the second experiment were further analysed. Table 4.12 shows the
results for relationship type and considering an evaluation where the direction of the
relationship is ignored, as well as the results obtained for the relationship type non-
related/other. The configuration for this evaluation considers the features and indexing
parameters that had the best performance in the results of Tables 4.10 and 4.11:

• all features: quadgrams, verbs, prepositions, and relational patterns;
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4. MinHash-based Relationship Classification

Sigs./ 1 kNN 3 kNN 5 kNN 7 kNN
Bands P R F1 P R F1 P R F1 P R F1

Se
t

I

200/25 0.4920.4000.441 0.6270.4260.507 0.716 0.423 0.532 0.724 0.429 0.539
200/50 0.4890.4000.440 0.6250.4250.506 0.716 0.423 0.532 0.726 0.430 0.540
400/25 0.4760.4050.438 0.5590.4180.478 0.724 0.434 0.543 0.7360.4430.553
400/50 0.4740.4050.437 0.5570.4230.481 0.715 0.434 0.540 0.731 0.441 0.550
600/25 0.6090.4350.508 0.6450.4370.521 0.688 0.440 0.537 0.663 0.440 0.529
600/50 0.5830.4350.498 0.6460.4370.521 0.686 0.433 0.531 0.719 0.441 0.547
800/25 0.5450.4260.478 0.6100.4300.504 0.651 0.434 0.521 0.640 0.442 0.523
800/50 0.5410.4230.475 0.6110.4320.506 0.652 0.436 0.523 0.643 0.444 0.525

Se
t

II

200/25 0.4760.4140.443 0.6280.4370.515 0.713 0.429 0.536 0.718 0.432 0.539
200/50 0.4740.4140.442 0.6280.4370.515 0.713 0.429 0.536 0.718 0.432 0.539
400/25 0.4990.4170.454 0.5630.4300.488 0.725 0.437 0.545 0.729 0.442 0.550
400/50 0.4970.4170.453 0.5650.4360.492 0.674 0.440 0.532 0.729 0.443 0.551
600/25 0.5800.4250.491 0.6400.4420.523 0.669 0.439 0.530 0.728 0.435 0.545
600/50 0.5530.4250.481 0.6410.4420.523 0.724 0.439 0.547 0.728 0.441 0.549
800/25 0.5490.4240.479 0.6150.4330.508 0.720 0.443 0.549 0.736 0.441 0.551
800/50 0.5490.4240.479 0.6150.4330.508 0.7120.4470.549 0.731 0.438 0.548

Se
t

II
I

200/25 0.4770.4030.437 0.6280.4310.511 0.720 0.432 0.540 0.723 0.438 0.546
200/50 0.4780.4040.438 0.6280.4310.511 0.666 0.432 0.524 0.670 0.438 0.530
400/25 0.5220.4310.472 0.5740.4320.493 0.732 0.446 0.554 0.731 0.442 0.551
400/50 0.5220.4310.472 0.5780.4410.500 0.679 0.446 0.538 0.732 0.445 0.554
600/25 0.5810.4270.492 0.6300.4320.513 0.673 0.446 0.536 0.677 0.441 0.534
600/50 0.5540.4270.482 0.6310.4320.513 0.726 0.439 0.547 0.731 0.442 0.551
800/25 0.5480.4260.479 0.6160.4350.510 0.7210.4490.553 0.733 0.447 0.555
800/50 0.5450.4230.476 0.6200.4460.519 0.721 0.445 0.550 0.732 0.446 0.554

Se
t

IV

200/25 0.4720.4040.435 0.6290.4360.515 0.724 0.436 0.544 0.723 0.440 0.547
200/50 0.4740.4040.436 0.5750.4360.496 0.671 0.436 0.529 0.670 0.440 0.531
400/25 0.5210.4290.471 0.5720.4290.490 0.730 0.443 0.551 0.731 0.441 0.550
400/50 0.5210.4290.471 0.5730.4360.495 0.680 0.447 0.539 0.732 0.444 0.553
600/25 0.5790.4230.489 0.6280.4290.510 0.673 0.446 0.536 0.678 0.437 0.531
600/50 0.5520.4230.479 0.6290.4280.509 0.728 0.446 0.553 0.731 0.438 0.548
800/25 0.5470.4230.477 0.6160.4330.509 0.715 0.445 0.549 0.723 0.444 0.550
800/50 0.5440.4200.474 0.6180.4390.513 0.716 0.444 0.548 0.731 0.4490.556

Table 4.10: Precision (P), Recall(R) and F1 results obtained with various configurations
of MuSICo in the Portuguese dataset.
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Sigs./ 1 kNN 3 kNN 5 kNN 7 kNN
Bands P R F1 P R F1 P R F1 P R F1

Se
t

IV

200/25 0.448 0.353 0.395 0.4600.3450.394 0.4920.3310.396 0.487 0.325 0.390
200/50 0.450 0.354 0.396 0.4590.3470.395 0.4890.3320.395 0.507 0.328 0.398
400/25 0.440 0.350 0.390 0.4480.3440.389 0.4680.3280.386 0.479 0.320 0.384
400/50 0.439 0.351 0.390 0.4450.3430.387 0.4650.3270.384 0.483 0.321 0.386
600/25 0.461 0.358 0.403 0.4660.3530.401 0.4820.3370.397 0.469 0.324 0.383
600/50 0.4610.3600.404 0.4630.3530.401 0.4900.3400.401 0.492 0.329 0.394
800/25 0.446 0.358 0.397 0.4620.3500.398 0.4920.3380.401 0.5160.3330.405
800/50 0.445 0.358 0.397 0.4530.3490.394 0.4840.3360.397 0.510 0.333 0.403

Table 4.11: MuSICo results over 25% of the instances for each semantic relationship
for the Portuguese dataset.

• min-hash signatures of size 800;

• locality-Sensitive-Hashing of size 25;

• 7 nearest neighbours.

Table 4.12 also presents an assessment of the results obtained in terms of accuracy.
Unlike macro-averages, which weight the types of relationships by the numbers of
occurrences in the corpus, accuracy measures the portion of correct classifications.
Results show that some classes, such as origem-de (i.e., source) and parte-de (i.e., part-
of), are relatively easy to identify and classify, while classes such as influenciado-por
(i.e., influenced-by) or successor-de (i.e., successor-of ) are more difficult to identify and
classify correctly. It is also important to notice that for the class influenciado-por the
training data contains only 110 relationship instances, and 35 instances for testing.

4.5 Conclusions

This chapter described MuSICo, a new scalable on-line supervised method for re-
lationship extraction based on nearest neighbour classification (k-NN). The nearest
neighbour search is computationally feasible since the k-NN classifier leverages on min-
wise hashing and on Locality-Sensitive Hashing (LSH).

Most supervised methods for relationship extraction have a high computational
complexity. MuSICo is fast, because, instead of learning a statistical model, it looks
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4.5 Conclusions

for the most similar relationship examples in a database in order to classify a new
relationship. Besides simplicity, computational efficiency, and direct support for multi-
class, MuSICo also has the advantage of being an on-line classifier: to consider new
training instances, one only needs to compute their min-hash signatures and store them
in the LSH bands.

Experiments made with datasets from three different application domains, Semeval
(i.e., generic web text), Wikpedia (i.e, wikipedia articles) and AImed (i.e., protein
interactions), have shown that relationship extraction can be performed with high
accuracy, using this method based on computationally efficient similarity search.

MuSICo achieves a competitive accuracy comparing to state-of-the-art results, con-
cretely F1 scores of 0.69 and 0.52 for the SemEval and AImed datasets, without relying
on any external resources for feature extraction. Although these scores are below
state-of-the-art, the global processing time, including feature extraction, training and
classification, is done in less than 3 minutes (i.e., 172 seconds for SemEval and 161
seconds for AImed), using a single thread of execution.

The classifier was also evaluated with Portuguese data. Experiments with a dataset
based on Wikipedia show the suitability of the proposed method, extracting 10 different
types of semantic relationships, eight of them being asymmetrical, with an average F1

of 0.56.
When measuring the scalability and processing time experiments, the observed time

taken to process grew linearly with the size of the dataset considered, with most of the
processing time spent in feature extraction, which can be easily computed in parallel,
levering on multi-core CPUs.

The software implementation of MuSICo used in the experiments presented in this
chapter is available at https://github.com/davidsbatista/MuSICo.
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5
Bootstrapping Relationships with

Distributional Semantics

BREDS (Bootstrapping Relationship Extraction with Distributional Semantics) is
a new semi-supervised bootstrapping system for relationship extraction relying on dis-
tributional semantics proposed in this dissertation. BREDS relies on word vector rep-
resentations (i.e., word embeddings) together with a simple compositionality function
to bootstrap relationships. This chapter introduces BREDS, describing its architecture
and workflow, and reports the results of a validation experiment.

5.1 BREDS

A bootstrapping system for relationship extraction starts with a collection of doc-
uments and a few seed instances. The system scans the documents, collecting textual
segments containing occurrences of the seed instances. Then, based on these contexts,
the system generates extraction patterns. The document collection is scanned once
again using the extraction patterns to match new relationship instances. These newly
extracted instances are then added to the seed set, and the process is repeated until a
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5. Bootstrapping Relationships with Distributional Semantics

certain stop criterion is met.
A key aspect in the bootstrapping process is the expansion of the seed set with new

relationship instances while limiting the semantic drift, i.e., the progressive deviation of
the semantics of the extracted relationships from the semantics of the seed relationships.
BREDS addresses this challenge with a new approach based on word embeddings.

State-of-the-art bootstrapping approaches rely on word vector representations with
TF-IDF weights, such as Snowball by Agichtein and Gravano (2000). However, ex-
panding the seed set by relying on TF-IDF representations to find similar instances
has limitations, since the similarity between any two relationship instance vectors of
TF-IDF weights is only positive when the instances share at least one term. For in-
stance, the two relational phrases:

Microsoft was founded by Bill Gates.

Bill Gates is the co-founder of Microsoft.

do not have any words in common, but both represent the same semantics, that is,
a person is the founder of an organisation. Stemming techniques can aid in these
cases (Porter, 1997). However, such techniques would only work for variations of the
same root word. By relying on word embeddings, the similarity of two relational phrases
can be captured even if no common words exist. For instance, the word embeddings
for co-founder and founded should be similar, since these words tend to occur in the
same contexts.

Word embeddings can nonetheless also introduce semantic drift. For instance, when
relying on word embeddings, relational phrases like:

John studied history at Lisbon University.

Mary is an history professor at Lisbon University.

can both have a high similarity. BREDS controls the semantic drift by ranking the
extracted relationship instances and scoring the generated extractions patterns.

Note that TF-IDF approaches represent a sentence or a relational phrase as a single
vector, whereas in word embeddings approaches each word is represented by a single
vector. BREDS combines the embedding vectors of a relational phrase into a single
vector, and computes the similarity of relationship instances based on that single vector.

BREDS has the same processing phases as Snowball (see Figure 5.1):
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5.1 BREDS

1) Find Seed 
Matches

2) Generate Extraction
Patterns 

4) Handle
Semantic Drift 

3) Find Relationships 
Instances

Seeds
Instances

Seeds
Instances

Document
Collection

Figure 5.1: BREDS general workflow procedure.

1. Find Seed Matches

2. Generate Extraction Patterns

3. Find Relationship Instances

4. Handle Semantic Drift

It differs, however, in attempting to find similar relationships using word embed-
dings, instead of relying on TF-IDF representations. The remainder of this section
details each of the four processing phases.

5.1.1 Find Seed Matches

As any other bootstrapping system, BREDS is initialized with seed instances of
a given relationship type. Then, BREDS scans the document collection and, if both
entities of a seed instance co-occur in a text segment within a sentence, that segment
is considered and BREDS extracts textual contexts as in Snowball:

BEF: the words before the first entity;

BET: the words between the two entities;

AFT: the words after the second entity.

For instance, in the sentence:
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5. Bootstrapping Relationships with Distributional Semantics

The tech company Soundcloud is based in Berlin, capital of Germany.

the three textual contexts correspond to:

BEF: The tech company

BET: is based in

AFT: capital of Germany

In the BET context, BREDS tries to identify a relational pattern based on a heuristic
originally proposed in the ReVerb OpenIE system, by Fader et al. (2011). The relational
pattern limits a relation context to:

• a verb (e.g., invented);

• a verb followed by a preposition (e.g., located in);

• a verb followed by nouns, adjectives, or adverbs ending in a preposition (e.g., has
atomic weight of).

These patterns will nonetheless only consider verb-mediated relationships. If no
verbs exist between two entities, BREDS extracts all the words between the two entities,
to build the representations for the BET context. For instance, given the sentence:

Google is based in Mountain View.

the relational pattern would correspond to: is based in, and in the sentence:

Google headquarters in Mountain View.

the pattern would be: headquarters in. Each context is transformed into a single vector
by a simple compositional function that starts by removing stop-words and adjectives
and then sums the word embedding vectors of each individual word. Mikolov et al.
(2013a,b) showed that representing small phrases by summing each individual word’s
embedding results in good representations for the semantics in the phrase.
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5.1 BREDS

Relationship Representation

A relationship instance i is thus represented by three embedding vectors: VBEF,
VBET, VAFT. For instance, in the sentence:

The tech company Soundcloud is based in Berlin, capital of Germany.

the relationship instance expressed by the sentence will be represented by the following
embedding vectors:

• VBEF = embedding(“tech”) + embedding(“company”)

• VBET = embedding(“is”) + embedding(“based”)

• VAFT = embedding(“capital”)

where, embedding(x) is a function that represents the embedding vector for word x.
For the BET context, BREDS also tries to identify the passive voice, using part-

of-speech (PoS) tags, which can help detecting the correct order of the entities in a
relational triple. For instance, using the seed <Google, DoubleClick> expressing
the relationship that the organisation Google owns the organisation DoubleClick, if
BREDS extracts relationship instances between two organisations and detects patterns
like:

ORG1 agreed to be acquired by ORG2

ORG1 was bought by ORG2

it will swap the order of the entities when producing a relational triple from the instance
being expressed in the phrase. Hence, it will output the triple <ORG2, owns, ORG1>,
instead of <ORG1, owns, ORG2>.

BREDS identifies the presence of the passive voice by considering any form of the
verb to be, followed by a verb in the past tense or the past participle and ending in
the word by, followed by a named-entity. This constrain is relaxed, allowing for the
occurrence of adverbs, adjectives or nouns between the two verbs and the preposition
by.
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5. Bootstrapping Relationships with Distributional Semantics

5.1.2 Extraction Patterns

After collecting all the seed contexts from the document collection and generating
instances, BREDS generates extraction patterns by applying a single-pass clustering
algorithm to the relationship instances gathered in the previous step. Each resulting
cluster contains a set of relationship instances, where each instance is represented by
three embedding vectors.

Algorithm 1 describes the clustering approach, which takes as input a list of re-
lationship instances and assigns the first instance to a new empty cluster. Next, it
iterates through the list of instances, computing the similarity between an instance x
and every cluster Cl. The instance x is assigned to the first cluster with similarity
higher or equal to τsim. If all the clusters have a similarity lower than τsim, a new
cluster Clnew is created, containing the instance x.

Algorithm 1: Single-Pass Clustering.
Input: Instances = {x1, x2, x3, ..., xn }, τsim
Output: Patterns = {}
Cl1 = {x1}
Patterns = {Cl1}
for x ∈ Instances do

for Cl ∈ Patterns do
if Sim(x,Cl) >= τsim then

Cl = Cl ∪ {x}
else

Clnew = {x}
Patterns = Patterns ∪ {Clnew}

The similarity function Sim(in, Clj), between an instance in and a cluster Clj, re-
turns the maximum of the similarities between an instance in and any of the instances
in a cluster Clj, if the majority of the similarity scores is higher than τsim. A value of
zero is returned otherwise. As a result, clustering in Algorithm 1 differs from the orig-
inal Snowball method, which computes similarities towards cluster centroids instead.

The computation of the similarity is illustrated in Figure 5.2. An instance is com-
pared with every other instance inside the cluster, and the majority of the scores decides
whether that instance is added to the cluster or not.
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Figure 5.2: Comparison between an instance and a cluster of instances.

The similarity between any two relationship instances is calculated by measuring
the cosine similarity between each instances’s contexts embedding vectors:

Sim(Sn, Sj) = α · cos(BEFi, BEFj) (5.1)
+ β · cos(BETi, BETj)
+ γ · cos(AFTi, AFTj)

where the parameters α, β and γ define the weight associated to the embedding vector
of each context.

5.1.3 Find Relationship Instances

After the generation of extraction patterns, BREDS scans the documents once
again, collecting all segments of text containing entity pairs whose semantic types
match the semantic types of the seed instances. For instance, for the seed <Google,
DoubleClick> BREDS collects all text segments of text containing a pair of named-
entities tagged as organisations.

For each collected segment, the three contexts BEF, BET, AFT are extracted and
an instance x is generated, as explained in 5.1.1. Then, the similarity with all previously
generated extraction patterns (i.e., clusters) is calculated. If the similarity between x

and a pattern Cl is equal or above τsim, then x is considered a candidate instance, and
the confidence score of the pattern Cl is updated.
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5. Bootstrapping Relationships with Distributional Semantics

A pattern’s confidence score is computed based on the extracted relationship in-
stances. If an extracted relationship instance contains an entity e1, which is part of
an instance in the seed set, and the associated entity e2 is the same as in the seed
set, the extraction is considered positive (i.e., included in set P ). If the relationship
contradicts a relationship in the seed set (i.e., e2 does not match), the extraction is
considered negative (i.e., included in set N); if the relationship is not part of the seed
set, the extraction is considered unknown (i.e., included in set U). A confidence score
is assigned to each pattern p according to its extractions as defined in Equation 5.2:

Confρ(p) = |P |
|P |+Wngt · |N |+Wunk · |U |

(5.2)

In the equation, Wngt and Wunk are weights associated to the negative and unknown
extractions, respectively.

The pattern which has the highest similarity (i.e., patternbest) is associated with i,
along with the similarity score (i.e., simbest). This information is kept in a history of
Candidates. Algorithm 2 describes this process in detail. Note that, as the histories of
Candidates and Patterns are kept through all the bootstrap iterations, new patterns
or instances can be added, or the scores of existing patterns or instances can change.

Algorithm 2: Find Relationship Instances.
Input: Sentences = {s1, s2, s3, ..., sn }, τsim
Input: Patterns = {Cl1, Cl2, ..., Cln }
Output: Candidates
for s ∈ Sentences do

x = create instance(s)
simbest = 0
pbest = None
for Cl ∈ Patterns do

sim = Sim(x,Cl)
if sim >= τsim then

Confρ(Cl)
if sim >= simbest then

simbest = sim
pbest = Cl

Candidates[x].patterns[pbest] = simbest

104



5.2 Evaluation

5.1.4 Handle Semantic Drift

To control semantic drift, BREDS follows the framework of Snowball, ranking the
extracted instances and discarding the least ranked. At the end of each iteration, all
the instances in Candidates are ranked according to their current confidence scores.
The confidence score of an instance is based on the similarity of all scores towards the
patterns that extracted it, weighted by the pattern’s confidence score:

Confι(i) = 1−
|ξ|∏
j=0

(1− Confρ(ξj)× Sim(Ci, ξj)) (5.3)

In the above equation, ξ is the set of patterns that extracted i, and Ci is the textual
context where i occurred. Only the relationship instances with a confidence score
equal or above τmin are added to the seed set, and subsequently used in the next
bootstrapping iteration.

5.2 Evaluation

This section describes an experiment evaluating the performance of BREDS against
Snowball. The experiment compares the performance of BREDS with Snowball, essen-
tially comparing how word embeddings perform against TF-IDF vectors in bootstrap-
ping relationship instances.

5.2.1 Document Collection Pre-Processing

The document collection used in the experiment consisted of all the news articles
published by the AFP and the APW between 1994 and 2010, which are part of the
English Gigaword collection (Parker et al., 2011), totalling 5.5 millions of articles.

The pre-processing pipeline is depicted in Figure 5.3. The pipeline is based on the
models provided by the NLTK 3.0.0 toolkit (Bird et al., 2009): sentence segmentation1,
tokenisation2, PoS-tagging3 and NER. The NER component in NLTK is a wrapper over
the Stanford NER 3.5.2 toolkit (Finkel et al., 2005).

1nltk.tokenize.punkt.PunktSentenceTokenizer
2nltk.tokenize.treebank.TreebankWordTokenizer
3taggers/maxent treebank pos tagger/english.pickle
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Sentence
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Figure 5.3: Document collection pre-processing pipeline.

The recognized entities in each sentence were associated by simple string matching
with entity names in FreebaseEasy (Bast et al., 2014), a processed version of Free-
base (Bollacker et al., 2008). FreebaseEasy contains a unique meaningful name for
every entity, together with canonical binary relations. This facilitates the use of the
relationships expressed in Freebase to evaluate the extracted relationships. For the ex-
periment, only the sentences containing at least two entities mentioned in FreebaseEasy
were considered, which corresponds to 1.2 million sentences.

The word embeddings were computed with the skip-gram model (Mikolov et al.,
2013a), configured for skip length of 5 tokens and vectors of 200 dimensions using the
word2vec4 implementation. The corpus for generating the embeddings was the full set
of AFP and APW articles, that is, all the articles published between 1994 and 2010.
The TF-IDF representations used by Snowball were calculated over the same articles
set.

5.2.2 Evaluation Framework

Evaluating a relationship extractor on a realistically-sized corpora, i.e. containing
hundreds of thousands of documents, is not humanly feasible. Bronzi et al. (2012)
proposed a framework for automatic evaluation of large-scale relationship extractors,
that estimates precision and recall.

Precision is measured by calculating how many relationships extracted by the sys-
tem are correct. For the experiment, a relationship <e1, rel, e2> is considered correct
if a knowledge base (KB) also contains the same relationship rel between e1 and e2, or
if the frequency of occurrence of e1, rel, e2 on a large corpus is above some threshold.

To calculate recall, the ground-truth of the input corpus needs to be estimated.
4https://code.google.com/p/word2vec/
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5.2 Evaluation

Figure 5.4: Venn diagram of the intersections among system output (S), knowledge
base (D) and the estimated ground truth (G).

Figure 5.4 shows the Venn diagram of the intersections between a KB D, the estimated
ground truth G and the system output S. Four different sets are generated based on
these intersections:

• a contains correct relationships from the system output that are not in the KB;

• b is the intersection between the system output and the KB;

• c contains relationships which are in the KB and are also described in the input
corpus, but that were not extracted by the system;

• d contains relationships described in the input corpus that are not in the system
output nor in the KB.

Having calculated the size of each region, precision and recall can be computed as:

P = |a|+ |b|
|S|

(5.4)

R = |a|+ |b|
|a|+ |b|+ |c|+ |d| (5.5)

To calculate the precision the size of regions a and b needs to be estimated. Region
b is calculated by determining whether an extracted relationship is in the KB D. Since
entity linking was performed between the entities in the sentences and Freebase, this is
obtained by direct string comparison. The size of the region a is estimated by leveraging
on proximity PMI (PPMI), which measures the likelihood of observing a relationship
given that e1 and e2 were observed:
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5. Bootstrapping Relationships with Distributional Semantics

PPMI(e1, rel, e2) = count(e1 NEAR:X rel NEAR:X e2)
count(e1 AND e2) (5.6)

in the equation above, X is the maximum number of words between the named-entities
e1 and e2. The intuition behind this heuristic is that relationships with high (relative)
frequency occurrence in a large corpus, such as the Web, are more likely to be correct.

The full Gigaword collection without the AFP and APW collections was used as the
large corpus to estimate the frequencies needed to calculate the PPMI. This dataset
was indexed with a full-text indexing library5. The proximity PMI threshold was set
to 0.7, and X to 6 tokens.

To estimate recall, the size of regions c and d needs to be estimated. Region c (i.e.,
relationships which are in the KB and also described in the input corpus) is estimated
by first generating a super set G′ containing true and false relationships from the input
corpus. This is achieved by performing the cartesian product at a sentence level, of all
the possible relationships between two entities. The set of true relationships in G′ is
approximately the same as the set of relationships that a perfect extractor would find
in the input corpus (i.e., the sentences containing at least two named-entities linked to
Freebase).

Having G′, |G ∩ D| is estimated by matching all the G′ relationships in D. Since
|G ∩D| = |b|+ |c|, then |c| = |G ∩D| − |b|. To calculate d we apply the PPMI to the
relationships found in the input corpus which are not in the KB (i.e., G′ \D). We then
determine |G \D|, and finally d = |G \D| − |a|.

5.2.3 Experiment

BREDS and Snowball have several configuration parameters. Table 5.1 shows set-
tings of all these parameters, which are the same both for BREDS and Snowball.

The experiment only considers relationship instances at a sentence level, formed by
pairs of named-entities no further away than 6 tokens, and with at least 1 token between
them, and context windows of 2 tokens before the first entity and after the second entity.
Regarding the single-pass clustering, clusters with less than 2 relationship instances are
discarded. In both systems, the bootstrapping ran for 4 iterations. The Wunk and Wunk

5https://pypi.python.org/pypi/Whoosh/
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Parameter Value
BET context maximum number of tokens 6
BET context minimum number of tokens 1
BEF context size 2
AFT context size 2
Minimum number of clustered instances 2
Number of bootstrapping iterations 4
Wngt 2
Wunk 0.1

Table 5.1: Configuration parameters used in the experiment.

parameters were set to 2 and 0.1, respectively, based on the results reported by Yu and
Agichtein (2003). In what regards the values for the similarity threshold τsim, and the
confidence threshold τt, 36 different bootstrapping runs were performed varying these
two parameters and combining all possible different values within the interval [0.5,1.0].

The experiment also evaluated two different schemas regarding the weighting of the
context vectors. Table 5.2 describes the weighting attributed to each context vector
(i.e., BEF, BET, AFT) as used in the similarity Formula 5.1. Conf1 only considers the
vector representing the BET context, while Conf2 uses the three contexts, giving more
weight to the BET context.

Besides Snowball (Classic) as proposed by Agichtein and Gravano (2000) and
BREDS, the experiment also considered an alternative implementation of Snowball
in which a relational pattern based on ReVerb is used to select the words for the BET
context, instead of just using the TF-IDF scores of all the words in that context.

Configuration Context Weighting

Conf1
α = 0.0
β = 1.0
γ = 0.0

Conf2
α = 0.2
β = 0.6
γ = 0.2

Table 5.2: Context vectors weighing for the experiment.
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Relationship Seeds

acquired <Adidas, Reebok>
<Google, DoubleClick>

founder-of <CNN, Ted Turner>
<Amazon, Jeff Bezos>

headquarters <Nokia, Espoo>
<Pfizer, New York>

affiliation <Google, Marissa Mayer>
<Xerox, Ursula Burns>

Table 5.3: Seeds for each relationship type used in the experiment.

The experiment considered four different types of semantic relationships, and, for each
relationship type, two seeds were considered, as described in Table 5.3.

Some of the extracted relationships are not correctly evaluated either because there
is not sufficient statistical evidence in the corpus to classify them as correct with the
PPMI measure, or because the relationship is not present in the KB.

The PPMI estimates whether a given triple<e1, rel, e2> is valid or not by measuring
the occurrence of two entities regarding a relational phrase rel in their proximity, over
the global frequency of co-occurrence of the two entities disregarding the words in their
proximity.

When analysing the output of the experiment, we notice that some relationship
instances are being classified as incorrect, although they are correct. This happens
because there is not sufficient statistical evidence to classify them as correct with the
PPMI measure. For instance, of all the 996 occurrences of the pair <Microsoft,
Steve Ballmer> only four occur with word head, and only two with the word ex-
ecutive, in their proximity. The evaluated systems output these two triples as part
of the extraction process of affiliation relationships, but the PPMI formula will give
them a low score, 2⁄996=0.002 and 4⁄996=0.004, respectively. Therefore, the extracted
relationship is classified as incorrect.

In order to avoid for such triples being wrongly classified as false, I analysed the
results and gathered a list of relational phrases (i.e., unigrams and bigrams). Then, in
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Relationship Valid relational phrases (rel)

acquired ’owns’, ’acquired’, ’bought’, ’acquisition’,

founder-of
’founder’, ’co-founder’, ’cofounder’, ’co-founded’,

’cofounded’, ’founded’, ’founders’, ’started by’

headquartered

’headquarters’, ’headquartered’, ’offices’, ’office’,
’building’, ’buildings’, ’based in’, ’head offices’

’located in’, ’main office’, ’ main offices’,

affiliation
’chief’, ’scientist’, ’professor’

’CEO’, ’employer’

Table 5.4: Relational phrases used in calculating the PPMI.

the evaluation process, all the triples with a PPMI value below the defined threshold
were checked against the list of relational phrases. If there is a direct match between
the relational phrase in the triple and the relational phrase in the list, the triple is con-
sidered correct. Table 5.4 presents these phrases, specific for each of the four evaluated
relationship types.

Another aspect is that the corpus consists of sentences taken from news articles,
which span for a period of over fifteen years (i.e., 1994-2010). Many of the facts
written in these articles are no longer correct, since they have changed and the KB
used for evaluation only contains the most recent changes. For instance, in 1997,
Boeing headquarters were in Seattle, but in 2001 the company moved to Chicago.
Also, until 1998 the president of FIFA was João Havelange, but then Sepp Blatter
became president. To account for these cases, a manual check was done over some
of the extracted relationships and the correctly extracted relationship instances were
added to a manually created knowledge base.

The precision and recall values were computed using both the FreeBaseEasy KB and
the manually inserted relationships to avoid counting these extractions as incorrect.

Table 5.5 shows, for each relationship type, the best F1 score of all combinations
of τsim and τt values, considering only extracted relationship instances with confidence
scores equal or above 0.5. The last row on each table shows the average precision,
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5.2 Evaluation

recall and F1 weighted by the number of extracted instances. The results show that
BREDS achieves better F1 scores than both versions of Snowball. The F1 score of
BREDS is higher, mainly as a consequence of much higher recall scores, which is due
to the relaxed semantic matching caused by using the word embeddings.

For some relationship types, the recall more than doubles when using word embed-
dings instead of TF-IDF. For instance, in the affiliation relationship BREDS outper-
forms Snowball, extracting a much larger number of correct relationships. This is due
to the to high semantic similarity between words/phrases, represented as word embed-
dings, that mediate the relationship of affiliation between a person and an organization,
as opposed to TF-IDF weighted vectors.

For the acquired relationship, when considering Conf1, the precision of BREDS
drops compared with the other versions of Snowball, but without affecting the F1

score, since the higher recall compensates for the small loss in precision.
Regarding the context weighting configurations, Conf2 produces a lower recall when

compared to Conf1. This might be caused by the sparsity of both BEF and AFT
contexts, which contain many different words that in most cases do not contribute to
capture the relationship between the two entities. Although, sometimes, the phrase or
word that indicates a relationship occurs on the BEF or AFT contexts, it is more often
the case that these phrases or words occur in the BET context.

Comparative performance results of Snowball (Classic) and Snowball (ReVerb) sug-
gests that selecting words based on a relational pattern to represent the BET context,
instead of using all the words, works better for TF-IDF representations.

Analysing the relationships extracted by each system, one can notice that word
embeddings generate more extraction patterns. Table 5.6 shows the most common
words occurring in the BET context for the top-ranked instances extracted by each
system.

In terms of the threshold parameters τsim and τt, there is no global configuration
that yields the best results across all the evaluated relationship types. As explained
before, Table 5.5 shows the best F1 scores from all the possible combinations of the
parameters τsim and τt values within the interval [0.5,1.0], corresponding to 36 different
bootstrap runs for each relationship type.

Analysing the configurations settings for the four relationship types, the best perfor-
mance of BREDS is achieved when τsim is set to 0.6 or 0.7. With a similarity threshold
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5. Bootstrapping Relationships with Distributional Semantics

Relationship BREDS Snowball (ReVerb and Classic)

acquired

acquired acquisition
acquisition acquired

purchased by
’s purchase of

founder-of

founder founder
co-founder
co-founders

founded

headquartered

based in based in
headquarters in headquarters in

headquartered in
offices in

affiliation

president president
chief chief

executive executive
vice-president

general manager
CEO

chairman

Table 5.6: Most common phrases/words included in the patterns which extracted the
top ranked instances.
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5.3 Conclusions

of τsim=0.5 the system extracts too many incorrect relationships, and with τsim ≥ 0.8,
it is too conservative and it becomes hard to expand the seed set.

Regarding the parameter τt, which controls the confidence threshold of relationships
instances to be added to the seed set, when τsim is set to values of 0.6 or 0.7 the best
F1-scores are achieved when τt is set to 0.7 or 0.8.

5.3 Conclusions

Overall, the BREDS approach for representing a sentence expressing a relationship
as a unique embedding vector achieves good results, outperforming Snowball, in an
evaluation experiment. The main advantage of BREDS over Snowball is the relaxed
semantic matching due to the word embeddings, which causes BREDS to learn more
extraction patterns and consequently achieving a higher recall.

There are several parameters that affect the performance of the system. In addition
to the heuristic threshold aspect, the initial seed set of relationship instances has an
impact on the performance of BREDS. In the experiment, there was no formal or
exhaustive procedure to select the seed instances. Instead, for each relationship type,
I randomly choose a few entities in relationships from the KB, then calculated their
co-occurrence frequency in the corpus, selecting those seen at least 5 times. The corpus
used in the experiment consisted of 5.5 millions news articles published between 1994
and 2010, which are part of the English Gigaword collection (Parker et al., 2011).

In the experiment, BREDS (Conf1) achieves the best weighted average F1, with a
score of 0.85, outperforming all the other systems and configurations. It is also worth
noticing that, in this experiment BREDS, achieved a good balance between precision
and recall, with weighted average scores of 0.83 and 0.87, respectively.

Although achieving better results than Snowball, BREDS still has some limitations.
Since the identification of relationships is based only on part-of-speech tags, BREDS
cannot capture capture long-distance relationships. Most of these cases could only be
handled by computing the syntactic dependencies of the words in a sentence.

BREDS, being a bootstrapping system, can be used to generate relationships to
be used as an input to a supervised RE system. In the next Chapter, I introduce
TREMoSSO, a framework which performs large-scale relationship extraction integrat-
ing both BREDS and MuSICo.
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5. Bootstrapping Relationships with Distributional Semantics

The software implementations of BREDS and Snowball, as used in the experi-
ments presented in this chapter, are publicly available on-line at https://github.
com/davidsbatista/BREDS and https://github.com/davidsbatista/Snowball re-
spectively.
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6
Large-Scale Relationship Extraction

TREMoSSo (Triples Extraction with Min-Hash and diStributed Semantics) is a
framework integrating MuSICo (see Chapter 4) and BREDS (see Chapter 5) along with
other NLP tools. TREMoSSo performs large-scale extraction of semantic relationships
based on similarity search and the distributional semantics, requiring little or no human
supervision. This chapter describes the architecture of TREMoSSo, and reports an
experiment, where it was applied to a large collection of news articles.

6.1 TREMoSSo Architecture

TREMoSSo relies on MuSICo and BREDS. MuSICo is a scalable on-line supervised
classifier, which can extract instances of many different relationship types. Given a
sentence, MuSICo classifies it as one of many possible relationship types based on its
database of relationship examples. Being a supervised classifier, it needs training data.
BREDS is a bootstrapping system based on word embeddings, which can automatically
collect large amounts of instances of a specific relationship type, given just a few seed
instances.

The architecture of TREMoSSo is depicted in Figure 6.1. The two main compo-

117



6. Large-Scale Relationship Extraction

Relationship
Triples

Setup

Extraction Output

Seed
Instances

Seed
Instances

EmbeddingsEmbeddings
Tagged

Sentences B
(Training)

Tagged
Sentences B

(Training)

Tagged
Sentences B
(Extraction)

Tagged
Sentences B
(Extraction)

Tagged Sentences

Tagged Sentences

BREDS

MuSICo

Sentence
Filter

Figure 6.1: TREMoSSo architecture.
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6.1 TREMoSSo Architecture

nents work in tandem: BREDS generates data for training (i.e., sentences holding
relationships between named-entities) and MuSICo classifies new sentences. The sen-
tences, collected by bootstrapping, hold relationship instances and are used by MuSICo
to populate its database of examples, which is the basis of MuSICo’s classification
schema. BREDS could also be used to directly extract relationship instances from a
document collection, without relying on MuSICo, but a different bootstrapping process
would have to be performed for each relationship type. By relying on MuSICo, several
different types of relationships can be extracted with a single-pass over a document
collection. Plus, new relationships instances can be continuously added to MuSICo’s
database, since it is an on-line classifier. There is an optional filter between the BREDS
and MuSICo. This component takes the output of BREDS and selects only sentences
containing valid relationships. TREMoSSo runs in two main processing steps:

1. Setup: BREDS collects training data from tagged sentences by bootstrapping,
based on a few seeds and word embeddings. Next, MuSICo extracts features from
the training data, and calculates the min-hash signatures. Finally the min-hash
signatures are indexed by the Locality-Sensitive-Hashing (LSH) component of
MuSICo. This step needs to run for each different relationship type.

2. Extraction: Large-scale relationship extraction using the sentences indexed in
MuSICo’s LSH tables to compare and classify the sentences from a document
collection.

The input for TREMoSSo consists of:

1. Seed instances.

2. Previously trained word vector embeddings.

3. A set of sentences, tagged with named-entities, for generating training data.

4. A set of sentences, tagged with named-entities, from which it extracts different
types of relationship instances.
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6. Large-Scale Relationship Extraction

6.2 Experiment Preparation

This section details the experimental setup and the preparation of the input dataset,
including: the pre-processing of a collection of English news articles, the generation
of word embeddings, the relationship types considered, the seeds selected, the tuning
of parameters and a description of the framework used to evaluate the relationships
extracted.

Figure 6.2 shows how the English Gigaword collection (Parker et al., 2011) was spilt
into different datasets used as input for TREMoSSO.

6.2.1 Setup and Extraction Datasets

The English Gigaword is a comprehensive archive of newswire text, it contains
close to 10 million of news articles published between 1994 and 2010 by seven dis-
tinct international sources of English newswire: Agence France-Presse (AFP), Associ-
ated Press World (APW), the New York Times (NYT), Central News Agency of Tai-
wan English Service (CNA), Xinhua News Agency English Service (XIN), Los Angeles
Times/Washington Post Newswire Service (LTW), and Washington Post/Bloomberg
Newswire Service (WPB).

For the experiment I created two document sets:

Set A: the articles published by the AFP and the APW.

Set B: the articles published by the NYT.

The datasets are disjoint; the training data is exclusively from Set A and is used to
extract relationships from Set B. The same NLP pipeline used for the experiment of
Chapter 5, depicted in Figure 5.3, processed both sets. This included, segmenting the
articles into sentences and then applying the Stanford NER (Finkel et al., 2005) to tag
organisations, persons and locations, and linking by direct string matching the entities
to the KB. In this experiment, I generated a KB from three different knowledge bases:
FreebaseEasy (Bast et al., 2014), YAGO (Hoffart et al., 2013) and DBpedia (Lehmann
et al., 2015). The reason for merging these three knowledge bases (KBs) lies in that
although the KBs might hold the same relationships, they can be expressed using dif-
ferent surface strings to refer to the same entities. For instance, the relationship <Bill
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Figure 6.2: Pre-processing of the English Gigaword collection for TREMoSSO.
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6. Large-Scale Relationship Extraction

Set A Set B
News Source AFP and APW NYT
# documents 5 587 401 1 962 178
# sentences 52 871 331 27 761 097
# selected sentences 2 012 601 848 134

Table 6.1: Statistical characterization of the datasets used in the experiments.

Gates, founder, Microsoft> is contained in all three KBs. However, different KBs
use different surface strings. FreebaseEasy uses the string Microsoft Corporation, while
in DBpedia the company is simply referred to as Microsoft.

Using these three KBs enables the collection of more sentences. Then, only the
sentences containing at least two entities mentioned in any of the knowledge bases
were considered. This transforms Set A and Set B into the Tagged Sentences A and
Tagged Sentences B, which are taken by TREMoSSo as input.

Having only sentences with named-entities represented in a KB is a necessary pre-
processing step. It enables the training data, gathered by bootstrapping to be filtered,
selecting only the correct relationships as training data for MuSICo. Also, it allows to
evaluate the output of TREMoSSo, and to calculate the performance over the Set B.
Table 6.1 describes the statistical characterization of both sets.

6.2.2 Word Embeddings

BREDS relies on word embeddings to bootstrap relationship instances. In this ex-
periment, I used the Skip-Gram model (Mikolov et al., 2013a) to compute the word
embeddings, configured for skip length of 5 tokens and vectors of 200 dimensions using
the word2vec1 implementation. The corpus from which the embeddings were gener-
ated consisted of all the news articles published by the AFP, the APW and XIN (see
Table 6.2).

6.2.3 Seeds

The seeds used to bootstrap relationship are dependent on relationship types that
one which to extract. The experiment considered the following types of semantic

1https://code.google.com/p/word2vec/
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6.2 Experiment Preparation

# Documents
AFP 2 479 624
APW 3 107 777
XIN 1 744 025
Total 7 331 426

Table 6.2: News articles collections used to generate the word embeddings.

relationship between three types of name-entities, organization (ORG), person (PER)
and location (LOC):

affiliation: relates a person with an organization; the person might work for the or-
ganization or is a representative of that organization (e.g. a professor affiliated
with an university, a president or a worker of a company)

has-part-in: indicates that one organization owns in total or in part another organiza-
tion (e.g, a company was acquired by another company, a company is a subsidiary
of another company, or a company holds shares of another organization)

founder-of: indicates the person that founded an organization

installations-in: indicates the geographic location of an organization installations
(e.g.: headquarters, offices, or any other form of compound that represents the
organization)

spouse-of: relates two persons living in a marriage or a civil union

studied-at: indicates that a person graduated, studied or currently studies at an
organization

Table 6.3 summarizes the relationship types to be extracted in terms of the entities’
semantic types and according to the direction of the relationship. The reason for
choosing these specific relationship types is related to the type of named-entities that
the used NER system can identify, and the relationship types among these types of
named-entities (i.e., PER, LOC, and ORG) that can be mapped to relationships in the
knowledge base.
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6. Large-Scale Relationship Extraction

Relationship Direction

affiliated-with (PER,ORG)
(ORG,PER)

owns/has-parts-in (ORG1,ORG2)
(ORG2,ORG1)

founded-by (ORG,PER)
(PER,ORG)

has-installations-in (ORG,LOC )
(LOC,ORG )

spouse (PER,PER)

studied-at (PER,ORG)
(ORG,PER)

Table 6.3: Evaluated relationships and arguments type.

Table 6.4 describes the seeds used to bootstrap relationship instances for each re-
lationship type. No formal process was followed to evaluate which seeds would achieve
the best results. This is not an easy task, given the size of the document collection
and all the possible pairs of named-entities. Therefore, the selection of seeds was per-
formed ad-hoc, and this approach is probably non-generalizable to other bootstrapping
problems.

The process consisted on pre-selecting, for each relationship type, a few pairs of
named-entities, mostly based on common sense, and confirming that both co-occurred
in the corpus. Next, through a series of queries performed over Set A, I selected only
those which had more co-occurrences with a phrase that expressed the relationship of
interest than with any other phrase.

The considered phrases explicitly express the relationship of interest. For instance,
for the has-installations relationship, apart from headquarters, it also aims at extracting
other physical locations of organisation assets. Therefore, pairs of entities were also
selected as seeds which occurred with phrases like “plant in” or “fabric in” in the
corpus.
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6.2 Experiment Preparation

Relationship Direction Seeds

affiliated-with

(ORG,PER)

<Google, Eric Schmidt>
<OPEC, Edmund Daukoru>
<UEFA, Michel Platini>

<WikiLeaks, Julian Assange>

(PER,ORG)

<Dominique Strauss, IMF>
<Henning Kagermann, SAP>
<Gianni Agnelli, Fiat>

<John Sauven, Greenpeace>

owns/has-parts-in

(ORG1,ORG2) <Adidas, Reebok >
<Volkswagen, Audi>

(ORG2,ORG1)

<Mercedes-Benz, Daimler AG>
<Airbus, EADS>

<Audi, Volkswagen>

founded-by

(ORG,PER) <CNN, Ted Turner>
<Google, Sergey Brin>

(PER,ORG) <Dietmar Hopp, SAP AG>
<Chung Ju-yung, Hyundai>

has-installations-in

(ORG,LOC)

<Opel, Spain>
<Nokia, Espoo>

<Volkswagen, Portugal>
<Siemens, Munich>

(LOC,ORG)

<Berlin, Deutsche Welle>
<New York, NBC News>

<Miami, National Hurricane Center>
<Seoul, Samsung Group>

<San Jose, Cisco>
<London, Unilever>

spouse (PER,PER)
<George W. Bush, Laura Bush>

<Jennifer Lopez, Marc Anthony>
<Britney Spears, Kevin Federline>

studied-at

(PER,ORG)

<Barack Obama;Columbia University>
<Barack Obama;Harvard University>
<Al Gore;Vanderbilt University>

<Al Gore;Harvard University>

(ORG,PER)

<Stanford, Larry Page>
<Harvard, Barack Obama>

<Harvard, Mark Zuckerberg>
<Harvard, Steve Ballmer>

Table 6.4: Seeds per relationship type.
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6. Large-Scale Relationship Extraction

6.2.4 BREDS and MuSICo Configuration

The function of BREDS within TREMoSSo is to collect sentences holding a rela-
tionship of interest. The τsim parameter in BREDS controls the similarity threshold
between instances and patterns, and for the experiment it was set to τsim = 0.6. This
choice is somehow relaxed. However, this is deliberate, since even if BREDS extracts
some invalid relationship instances, the output of BREDS will be filtered and only the
correct relationships will be selected as training data for MuSICo.

The bootstrapping ran four iterations, for each relationship type, and the context
weighting parameters were set to α = 0.0, β = 1.0 and, γ = 0.0 (i.e., BREDS only
considered the words between the named-entities). This choice of parameters was based
on the experiment described in Chapter 5.

For this experiment, a different version of MuSICo, as presented in Chapter 4, was
implemented. This version is coded in Python and the bands in the Locality-Sensitive
Hashing (LSH) structure are implemented with REDIS (Carlson, 2013), a in-memory
key-value persistence storage structure. Also, in this version, both the indexing and
classification phases are performed in parallel, leveraging multi-core hardware archi-
tectures. In the classification phase, MuSICo considers every pair of named-entities in
a sentence, generating three contexts (i.e., BEF,BET and AFT). From each context it
extracts the following features:

• The semantic type of each entity.

• ReVerb Patterns from the BET context.

• ReVerb Patterns from the BET context with passive voice.

• ReVerb Patterns from the BET context with verbs normalized.

• Verbs occurring in all contexts except for auxiliary verbs.

• All the nouns from the BET context.

• All the prepositions from BET context.

• n-grams of characters from the BEF,BET and AFT contexts.
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Regarding MuSICo’s configuration signatures, bands and kNN, the experiment only
took into consideration the best configuration results reported on Chapter 4.

• min-hash bands of 25 and 50;

• signatures of size 400, 600 and 800;

• consider the 3, 5 and 7 nearest neighbours;

6.3 Running TREMoSSo

As described in Section 6.1 TREMoSSo runs in two main processing steps. The
Setup step consists of the following operations:

• Bootstrap relationship instances.

• Filter the relationship instances gathered by bootstrapping.

• Index the relationship instances in MuSICo’s LSH tables.

The Extraction step consists of only one operation:

• Extract relationship instances based on the populated MuSICo’s LSH tables.

The Setup step starts by invoking BREDS giving the document collection and
seeds to process as input. In the experiment, this operation was repeated 11 times
with different sets of seeds for each relationship types/direction, as shown in Table 6.4.
This operation resulted in a set of sentences. Next, a filter was applied to the sentences
by invoking the evaluation framework presented before in Chapter 5. This operation
was also repeated 11 times, each to filter the collected sentences for relationship type.
Finally, after the filtering phase, the selected sentences are indexed in MuSICo’s LSH
tables. This operation is performed by invoking MuSICo in indexing mode.

After the Setup phase is complete, the system is ready to perform multi-class ex-
traction of relationships. In the extraction phase, MuSICo was invoked in classification
mode.
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Relationship Freebase DBpedia Yago

affiliation employment - isAffiliatedTo
governance - worksAt
leader of - -

owns/has-parts-in acquired subsidiary owns
founded-by founded founder created

has-
installations-
in

place founded headquarter isLocatedIn
- location -
- locationCountry -
- locationCity -

located-in location citytown capital isLocatedIn
largestCity

spouse-with married to - -
spouse partner - -

studied-at almaMater graduatedFrom

Table 6.5: Relationships from the Freebase, DBpedia and Yago used for evaluation.

6.4 Experiment Results

This section reports the results and performance of each of the two running phases
of TREMoSSo: setup and classification.

I used the framework proposed by Bronzi et al. (2012), described in Chapter 5, to
evaluate the extracted relationships. This framework depends on a KB holding the
relationship types to be evaluated. To build my evaluation KB, I selected relationships
types from the three KBs described before. The relationship types from each KB are
described in Table 6.5.

The evaluation framework leverages a large corpus to estimate the proximity Point-
wise Mutual Information (PPMI) (see Formula 5.6). For this, I used all the collections
from Gigaword except the ones contained in sets A and B. This corresponds to the
CNA, XIN, LTW, WPB collections (see Table 6.6). The StanfordNER (Finkel et al.,
2005) tagged these four collections and then I created an index allowing to perform
queries to calculate the PPMI.

Besides evaluating the final output of TREMoSSO, this framework was also used
as the filter, between the output of BREDS and the input for MuSICo.
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# Documents
CNA 145 317
LTW 411 032
WPB 26 143
XIN 1 744 025
Total 2 326 517

Table 6.6: Collections used to create the full text index to calculate the PPMI.

6.4.1 TREMoSSo Setup Evaluation

The setup phase essentially corresponds to bootstrap relationship instances, filter-
ing only the correct ones, and finally indexing them in the LSH tables of MuSICo.
Table 6.7 shows precision recall and F1 computed by the evaluation framework for the
relationships bootstrapped by BREDS.

The results vary for different relationship types, and, for the same relationship type,
the results also vary according to the direction. The affiliated-with relationship, consid-
ering the (ORG,PER) direction, achieves the best F1. The news articles contain many
references to affiliations of persons with organisations, and these are well captured,
since many phrases/words have a high similarity among them, e.g.: CEO, president,

Relationship Direction Precision Recall F1

affiliated-with (ORG,PER) 0.97 0.82 0.89
(PER,ORG) 0.52 0.53 0.53

owns (ORG1,ORG2) 0.51 0.71 0.60
(ORG2,ORG1) 0.41 0.47 0.44

founded-by (ORG,PER) 1.00 0.76 0.86
(PER,ORG) 0.87 0.33 0.48

has-installations-in (ORG,LOC) 0.82 0.55 0.66
(LOC,ORG) 0.93 0.58 0.71

spouse (PER,PER) 0.59 0.59 0.59

studied-at (PER,ORG) 0.89 0.74 0.81
(ORG,PER) 0.88 0.41 0.56

Table 6.7: Precision, Recall and F1 for evaluated relationships and directions consid-
ered.

129



6. Large-Scale Relationship Extraction

chief, financial chief.
The founded-by relationship is mostly expressed through the verb and sometimes

noun founder and co-founder.
The owns relationship is more difficult to handle. Detecting the correct direction, in

particular, is hard. BREDS learns several patterns, such as: owned by, a subsidiary of or
unit of, which capture <ORG2, owned-by, ORG1> relationships, but all these patterns
have a high similarity with other patterns, such as unit, which captures <ORG1, owns,
ORG2> relationships. Also, simply detecting the passive voice to discover the direction
for this relationship type is not sufficient. For instance, the direction of the relationship
changes by simple adding an of to the pattern unit. Another problem is due to a high
similarity with patterns such as merged with, which do not express that one organisation
owns another. Also, many entities tagged as organisations correspond to sports teams,
and there are many sentences that express that one team bought an athlete from
another team, like:

Bob Wickman his fifth game since Cleveland acquired him from Milwaukee .

The relationship has-installations is problematic for the direction (LOC,ORG), due
to the way the patterns are ranked. For each extracted <e1, rel, e2> instance, in which
e1 is in the seed set, but e2 does not correspond to the e2 in the extracted relationship,
BREDS classifies the extraction as negative (see Formula 5.2). For instance, given a
few seeds, such as:

<Berlin; Deutsche Welle>

<New York; NBC News>

<London; Unilever>

BREDS can, for instance, learn the following extraction patterns:

LOCe1 headquarters of ORGe2

LOCe1 - based ORGe2

LOCe1 offices of ORGe2

Next, based on these extraction patterns, BREDS can extract instances, such as:
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<London; BBC>

<London; HSBC>

<Paris; EADS>

<London; Greenpeace>

<New York; United Nations>

among many others. The problem is with the relationship instances that share a
location with a seed instance, in which e1 is in the seed set, but associated with another
e2. Each will be marked as a negative extraction, although most of them are correct.
This will then cause the confidence score of the pattern to be low (see Formula 5.2).
Consequently, this will also cause the confidence score associated with each extracted
instance to also have a low confidence score (see Formula 5.3), and no new seeds
are added to the seed set. Something similar happens for the relationship studied at
relationship, for the direction (ORG,PER).

There are two ways to cope with this problem: adding more seed instances or
lowering the confidence threshold for instances to be added to the seed set.

The spouse relationship also achieves good results, although BREDS wrongly learns
some extraction patterns based on words/phrases such as: ’divorced’, is the widow of.

More generally, and by analysing all the results, most of relationship instances
are wrongly extracted due three main causes of errors: shallow parsing, named-entity
recognition and relational patterns.

Shallow parsing

One type of error is caused by the shallow parsing approach, which fails to detect
long distance relationships between named-entities. For instance, in the sentence:

The ICJ, which is part of the United Nations is based in The Hague.

when bootstrapping has-installations relationship instances, BREDS discovers, among
other patterns, the pattern based in. This pattern matches the sentence above, between
the entities United Nations and The Hague, causing BREDS to wrongly extract
the relationship <United Nations, has-installations, The Hague> .
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Named-Entity Recognition

Errors originated by the NER sub-system, also cause the extraction of wrong rela-
tionship instances. For instance, considering the following tagged sentences:

Barotillo, a 22-year-old native of the Philippines now based in Australia.

An inspection of six Boeing 747-200s owned by Lufthansa uncovered no problems.

in the first sentence, the named-entity Philippines is wrongly classified as an or-
ganization, resulting in the system wrongly extracting the instance <Philippines,
has-installations, Australia>. In the second sentence, the NER system classified the
string Boeing as an organization, but Boeing belongs to the sequence Boeing 747-200s
which is refers six airplanes. When analyzing the sentence, BREDS wrongly extracts
the relationship instance <Boeing, owned-by, Lufthansa>.

Relational Patterns

Another type of error is related to the matching of relational patterns represented
as an unique embedding vector. Considering, as before, the relational pattern based
in to extract has-installations relationship instances, that pattern causes BREDS to
wrongly extract instances from the following sentences:

Anthony Shadid is an Associated Press newsman based in Cairo.

Ravi Nessman is an Associated Press correspondent based in Jerusalem.

In other cases, relational patterns have a high similarity, for the same relationship
type, but in a different direction. For instance, for the relationship type <ORG1,
owns, ORG2> which states that ORG2 is part of ORG1, a learned pattern is ’unit’.
For instance,

Unions at General Motors unit Opel warned about a widespread strike action.
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but for the other direction <ORG2, owned-by, ORG1> a typical pattern learned by
BREDS is ’a unit of’. For instance,

Mercedes-Benz a unit of Daimler-Benz.

Both embedding vectors, generated for the relational patterns unit and a unit of , have
high similarity. Some of these cases are due to generation of the unique vector by
BREDS, which removes stop words before summing the embeddings of each word.

Another cause of wrong extractions related to the relational patterns is due to the
use of negation. For instance, when bootstrapping studied-at relationship instances,
BREDS learns the patterns ’graduated from’, and ’never graduated from’, which have
high similarity between them, although the semantics are completely different.

Table 6.8 shows the number of relationship instances for each relationship type
that were considered correct by the evaluation framework, and the total number of
relationship instances. These relationships compose the training set that is indexed in
MuSICo’s database of examples.

The generated training data are highly skewed. The relations affiliated-with and
has-installations-in account for almost 88% of all the relationship instance examples.
The relation affiliated-with itself accounts for more than 50% of the examples, and
has-installations-in more than 20%. Others have too few examples compared with the
total number of gathered examples. For instance, the relationship studied-at has less
than 1% of the total number of relationship instances, and owns-has-parts close to 3%.

6.4.2 Extraction

Next, MuSICo extracted relationships from Set B, containing total of 848,134 sen-
tences. This step consisted on analysing all possible pairs of named-entities in a sen-
tence. For each pair within a certain distance, MuSICo extracts the features, calculates
the min-hash signatures, and using the the signatures finds the most similar examples
in its database and classifies the relationship. The framework of Bronzi et al. (2012)
calculated the performance of the extraction in terms of Precision, Recall and F1 for
each relationship type. Table 6.9 shows the results for the MuSICo’s configuration

133



6. Large-Scale Relationship Extraction

Relationship Direction # Relationship
Instances

affiliated-with (PER,ORG) 2 708 ( 13.9% )
(ORG,PER) 9 775 ( 50.2% )

owns/has-parts-in (ORG1,ORG2) 501 ( 2.6% )
(ORG2,ORG1) 100 ( 0.5% )

founded-by (ORG,PER) 802 ( 4.1% )
(PER,ORG) 92 ( 0.5% )

has-installations-in (ORG,LOC) 4 259 ( 21.9% )
(LOC,ORG) 362 ( 1.9% )

spouse (PER,PER) 725 ( 3.7% )

studied-at (PER,ORG) 104 ( 0.5% )
(ORG,PER) 36 ( 0.2% )

Total 19 464 ( 100% )

Table 6.8: Number of relationship instances per relationship type and direction in
Tagged Sentences A, used as MuSICo’s training data.

which achieved the best performance: min-hash signatures of size 400, 50 bands and
considering the 5 nearest neighbours.

There is relation between the performance of the classifier for a specific relationship
type and the number of examples indexed for that relationship type. Comparing the
F1 scores in Table 6.9 with the number of examples, as show in Table 6.8, one can
notice a trend: the higher the relative number of examples for a relationship type, the
better the classifier’s performance for that relationship type.

6.4.3 Running Times of MuSICo

The running times of MuSICo for the two phases were also measured. The operation
of extracting the features mentioned above from 19,464 sentences, part of the Tagged
Set A, and indexing them in MuSICo’s LSH took 572 seconds using 12 cores, con-
sidering min-hash signatures of 400 and 50 bands. By leveraging multi-core hardware
architectures, and using the 12 cores, MuSICo processed, on average, 34.1 sentences per
second. Note that in the training data each sentence contains just a single relationship.

In the classification phase, MuSICo analysed a total of 848,134 sentences, part of the
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Relationship Direction Precision Recall F1

affiliated-with (ORG,PER) 0.490 0.736 0.588
(PER,ORG) 0.070 0.293 0.113

owns/has-parts-in (ORG1,ORG2) 0.423 0.194 0.265
(ORG2,ORG1) 0.233 0.095 0.135

founded-by (ORG,PER) 0.327 0.191 0.241
(PER,ORG) 0.036 0.020 0.026

has-installations-in (ORG,LOC) 0.836 0.655 0.734
(LOC,ORG) 0.386 0.182 0.248

spouse (PER,PER) 0.486 0.139 0.217

studied-at (PER,ORG) 0.096 0.394 0.154
(ORG,PER) 0.250 0.067 0.105

Table 6.9: Precision, Recall and F1 for evaluated relationships and directions considered
in Tagged Sentences B.

Tagged Set B. Since each sentence MuSICo considers all possible pairs of relationships,
this resulted in a classification of 980,106 relationships. The classification operation
including extracting features, calculating the min-hash signatures, and computing the
similarity with the 5 closest neighbours, took approximately 6,050 seconds using the
same 12 cores. In this scenario MuSICo processed on average, 3.2 sentences per second.
Note, however, that each sentence can contain an arbitrary number of relationships.

6.5 Conclusions

This chapter presented TREMoSSo, a framework for performing large-scale rela-
tionship extraction, based on similarity search and distributional semantics. TREMoSSo
requires little or no human supervision. The chapter illustrated, through an experi-
ment, how BREDS can be used to populate the database of examples of MuSICo.
Then, with its database of examples populated, MuSICo can extract different relation-
ship types with a single pass from a large document collection.

A limitation to TREMoSSo’s extraction capability is related to the number of in-
dexed relationship examples per type. Relationship types with a considerably smaller
number of examples then the other types will yield a smaller number of extractions, or
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incorrect extractions.
Starting from only 40 seed relationship instances of 11 different types, it was able

to extract around 4,700 correct relationship instances from a text with about 850,000
sentences.

The software implementation of TREMoSSo and MuSICo used in this experiment
are available on-line at http://www.github.com/davidsbatista/TREMoSSo.
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7
Conclusions

The goal of the research described in this thesis was to address challenges regarding
the scalability of relationship extracting software for crawling large collections of docu-
ments, and how bootstrapping methods can be used to automatically generate training
data. I addressed these two challenges separately, designing and implementing new
algorithms and performing experimental evaluations in both cases. The proposed solu-
tions for these two challenges were later combined in a scalable framework for semantic
relationship extraction which requires little or no human supervision. This chapter
reviews the main findings of this dissertation, discusses the limitations of the proposed
solutions, and outlines directions for future work.

7.1 Main Findings

I explored new methods for semantic relationship extraction based on two research
questions. The first addressed the scalability of relationship extraction:

Can supervised large-scale relationship extraction be efficiently performed based on
similarity search ?
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To answer this first question, I have developed MuSICo, a new supervised classifier,
based on the idea of nearest neighbour classification, which is trained with textual rep-
resentations of relationships. Supervised machine learning algorithms for classification
infer a statistical model based on annotated examples. Alternatively, instead of learn-
ing a model, MuSICo’s algorithm can find the most similar examples in a database,
based on k nearest neighbour (kNN) search. Based on the similarities scores with the
closest examples, the classifier makes a classification decision. This approach, however,
relies in finding the most similar examples in a database in a fast and efficient way.

MuSICo was empirically evaluated through experiments with well known datasets
from three different application domains, showing that the task can be performed with
high accuracy, using a simple on-line method based on similarity search, that is also
computationally efficient. Through experiments, it was shown that this classifier scales
in terms of processing time almost linearly as the size of the dataset grows.

The second question addressed the problem of bootstrapping relationships instances
from a large collection of documents:

Can distributional semantics improve the performance of bootstrapping relationship
instances ?

To answer the second question, I have developed BREDS, a software for bootstrap-
ping relationship extractors, which relies on distributional semantics to learn patterns
for extracting relationship instances. The distributional hypothesis is exploited through
word embeddings, i.e., dense vector representations for each word. The performance
of BREDS was evaluated by comparing it to a baseline system which relies on TF-IDF
weighted vectors. The obtained results show that relying on word embeddings achieves
better performance than a similarly configured TF-IDF baseline. The relative increase
in performance is mostly due to the higher recall, which is caused by the relaxed se-
mantic matching enabled by computing similarities based on word embeddings.

7.2 Limitations and Future Work

The research activities described in this dissertation were mainly in the design,
development, and evaluation of two tools. I will address their limitations and ideas for
future developments separately.
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7.2.1 MuSICo

MuSICo is a min-hash-based method for fast extraction of semantic relationships
from textual documents. MuSICo’s performance evaluation has shown that its scal-
able and, for some datasets, it achieves competitive results with the state-of-the-art.
Nevertheless, some of the identified limitations could be overcome.

MuSICo relies on part-of-speech (PoS) tags and lexical features to represent re-
lationships. However, these features do not capture long distance relationships in a
sentence. Some of the state-of-the-art systems use graph kernel methods for relation-
ship extraction, exploring the similarity between graph-based representations of the
relationship instances, derived from both lexical information and from constituency or
dependency parsing trees.

Teixeira et al. (2012) proposed an algorithm for graph fingerprints generation based
on min-hash values vectors of the graph substructures. The algorithm enables efficient
computation of the similarity between large sets of graphs using a small amount of data.
This method could also be applied in MuSICo, allowing it to perform similarity search
by relying on graph-based representations of the syntactic dependencies extracted from
a sentence. This would enable MuSICo to capture long-distance relationships.

Since the seminal work of Broder (1997), there have been considerable theoretical
and methodological developments on the application of minwise hashing techniques. In
future work, the b-bit minwise hashing approach by Li and König (2010) for improving
storage efficiency on very large datasets, or the extension proposed by Chum et al.
(2008) for approximating weighted set similarity measures, could be considered.

7.2.2 BREDS

Through an experimental evaluation, BREDS outperformed a baseline system based
on TF-IDF vector weights. Nevertheless, it has limitations that are at the heart of
many of the wrongly extracted relationship instances. I identified four aspects in which
BREDS could be improved.

Sentence parsing

A crucial limitation in BREDS is that it performs a shallow parsing of the sen-
tence (i.e., PoS-tags), limiting the type of relationships that can be captured. Simply

139



7. Conclusions

PoS-tags are not enough to capture long distance relationships between entities in a
sentence. Plus, relying solely on PoS-tags can introduce errors in the extraction of
relationships. BREDS uses a relational pattern, introduced by ReVerb (Fader et al.,
2011), to discover relationships between named-entities, for instance, given the follow-
ing sentence:

The ICJ, which is part of the United Nations is based in The Hague.

BREDS wrongly extracts the relationship <United Nations, has-installations,
The Hague>. This type of error can be avoided by computing the syntactic dependen-
cies among words in the sentence, and relying on the words in the path between the
two entities to identify a relationship. Bunescu and Mooney (2005b) showed that the
path of dependencies between the entities are good indicators of the relationship.

Figure 7.1a shows the syntactic dependencies for the sentence above. By analysing
the dependencies path one notices that the entities ICJ and The Hague are connected
through the word based, which is a good indication of the headquartered relationship.
In another example, given the sentence:

Anthony Shadid is an Associated Press newsman based in Cairo.

Due to the relational pattern based on PoS-tags, BREDS wrongly extracts the relation-
ship <Associated Press, has-installations, Cairo>. By analysing the words in the
dependency path (see Figure 7.1b) between the entities, one notices the word newsman
instead of the phrase based in.

Finally in another example, given the sentence:

Fiat’s acquisition of General Motors subsidiary Opel in Germany.

BREDS wrongly extracts the relationship <Fiat, acquired, General Motors>, due
to finding the phrase acquisition of between the two entities. By analysing the de-
pendencies path in Figure 7.1c, the path between Fiat and Opel, contains the word
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(a) The ICJ, which is part of the United Nations is based in The Hague

(b) Anthony Shadid is an Associated Press newsman based in Cairo

(c) Fiat’s acquisition of General Motors subsidiary Opel in Germany

Figure 7.1: Syntactic dependencies for different sentences.

acquisition, which might indicate that the sentence expresses the relationship <Fiat,
acquired, Opel>.

Nevertheless, computing syntactic dependencies is much more computationally ex-
pensive than simply identifying the PoS-tags associated with each word.

Compositional function

After identifying the words that mediate a relationship, BREDS uses a simple
compositional function to generate a single embedding vector. This function simply
removes stopwords and then sums the word embedding vectors for the remaining words.
There are, however, richer compositional functions which could be explored. Gormley
et al. (2015) proposed a compositional model which combines word embeddings and
NLP features, such as syntactic dependencies.
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Semantic Drift

BREDS uses the Snowball Agichtein and Gravano (2000) mechanism to control
semantic drift. This mechanism ranks a pattern by evaluating its extracted instances.
The evaluation compares the extracted instances against instances in the seed set. But,
as shown in Chapter 6, this approach can have some problems. When an extracted
relationship <e1, e2> shares e1 with a seed instance, if e2 does not match, the extracted
instance is classified as incorrect. This will then cause the confidence score of the
pattern to be low, and consequently, the confidence score of the extracted instance,
resulting in no new seeds being added to the seed set.

Different mechanisms to detect semantic drift could be explored and incorporated
in BREDS. For instance, McIntosh and Curran (2009) hypothesized that semantic drift
occurs when a candidate instance is more similar to recently added instances than to
the seed instances or high scored instances added in the earlier iterations.

Document Collection Pre-Processing

BREDS depends on a pre-processing step, which consists of identifying the named-
entities in the collection of documents from which it extracts semantic relationships. In
the experiments carried in this dissertation, the pre-processing step consisted of simply
identifying three types of named-entities: persons, locations and organizations. This
task was performed by a named-entity recognizer (NER) (Finkel et al., 2005) that asso-
ciates a string or a sequence of strings with a class label. As shown in Chapter 6, errors
generated by the NER sub-system will cause BREDS to extract wrong relationships.

A more robust approach to this task would be to replace the NER sub-system in
the pre-processing pipeline by an entity-linking approach. Entity Linking (EL) involves
the disambiguation of an entity according to a database. The main goal is to identify
the different senses for a same entity. For instance, an EL system could infer that
the strings Bush, G. W. Bush, and George Bush all refer to the same entity. This
could alleviate some of the errors generated by simple NER. The biggest advantage,
compared with simple NER, would be that BREDS could capture more contexts where
the same entity is mentioned, but with a different surface string. Moreover, some EL
systems, such as the one proposed by Hoffart et al. (2011), can identify more fine-
grained categories of named-entities (e.g., categories from Wikipedia), going beyond
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the person, location and organisation entities, which would enable BREDS to extract
many more different relationship types.

7.3 Final Words

Knowledge bases (KBs), such as knowledge graphs, are essential tools for machine
reasoning in many NLP tasks, like question answering. Manual construction and cu-
ration of a KB is costly, although they can be highly accurate. Automatic extraction
of information from text is the obvious alternative. Relationship extraction (RE) is
one way of achieving that goal of automating the extraction of structured information
from text, particularly from large collections of documents.

I believe that, over the coming years, new RE techniques and the availability of
large collections of text will make RE more accurate and improve the coverage of
automatic generated KBs. As of the writing of this dissertation, Deep Learning based
techniques dominate most of the current recent research in relationship extraction (dos
Santos et al., 2015; Gormley et al., 2015; Xu et al., 2015a,b). However, these are
supervised learning approaches requiring labelled datasets for training, which is always
a bottleneck. In my view, future RE research will explore techniques combining semi-
supervised or distantly supervised methods with the new Deep Learning approaches,
efficiently extracting many different types of relationship instances from large document
collections such as the Web.
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