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Abstract. Relationship extraction concerns with the detection and clas-
sification of semantic relationships between entities mentioned in a col-
lection of textual documents. This paper proposes a simple and on-line
approach for addressing the automated extraction of semantic relations,
based on the idea of nearest neighbor classification, and leveraging a
minwise hashing method for measuring similarity between relationship
instances. Experiments with three different datasets that are commonly
used for benchmarking relationship extraction methods show promising
results, both in terms of classification performance and scalability.
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1 Introduction

The task of relationship extraction concerns with the detection and classification
of semantic relationships between entities mentioned in a collection of textual
documents. Popular application domains include the detection of gene-disease
relationships or protein-protein interactions in biomedical literature [4,11,19],
the detection of associations between named entities referenced in news or web
corpora (e.g., birthplace relations between persons and locations, or affiliation
relations between persons and organizations) [3,6], or the detection of relations
between pairs of nominals in general [9].

Over the years, multiple approaches have been proposed to address relation-
ship extraction [9,11,17]. Rule-based methods employ a number of linguistic rules
to capture relation patterns. Feature-based methods, on the other hand, trans-
form the text into a large amount of linguistic features (e.g., lexical, syntactic
and semantic features), later capturing the similarity between these feature vec-
tors through traditional supervised learning methods. Recent developments have
mainly relied on kernel-based learning approaches, either exploring kernels for
representing sequences [4], in an attempt to capture sequential patterns within
sentences, or kernels specific for trees or graph structures in general, to learn
features related to parse tree structures [3,13]. Kernel methods are better than
feature-based methods at circumventing data sparseness issues and at exploring
very large feature spaces, but nonetheless they are also computationally demand-
ing. Whenever one needs to address real-world problems involving hundreds of
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relationship classes as expressed on large amounts of textual data, and when
dealing with large training datasets, scalability becomes an issue.

In this paper we explore the automated extraction of semantic relations,
based on nearest neighbor classification. To make the nearest neighbor search
computationally feasible, we leverage an efficient method based on minwise hash-
ing and on Locality-Sensitive Hashing (LSH) [2,15]. Experiments with three
different collections that are commonly used for benchmarking relationship ex-
traction methods, namely the dataset from the SemEval 2010 task on multi-way
classification of semantic relations between pairs of nominals [9], the Wikipedia
relation extraction dataset created by Culotta et al. [6], and the AImed dataset
of human protein interactions [4], showed good results. We specifically tested
different configurations of the proposed method, varying the minwise hashing
signatures and the number of considered nearest neighbors. Our best results cor-
respond to a macro-averaged F1 score of 0.69 on the SemEval dataset, a macro-
averaged F1 score of 0.43 on Wikipedia, and an F1 score of 0.52 on AImed. These
values come close to the state-of-the-art results reported for these datasets, and
we argue that the method has advantages in simplicity and scalability.

Section 2 of the paper presents related work. Section 3 details the proposed
method, describing the considered representation for the relation instances, and
presenting the minwise hashing approach that was used. Section 4 presents the
experimental evaluation of the proposed method. Finally, Section 5 summarizes
our conclusions, and outlines possible directions for future work.

2 Related Work

Extracting semantic relations between nominal expressions (e.g., named entities
like persons, locations or organizations) in natural language text is a crucial step
towards document understanding, with many practical applications. Several au-
thors have addressed the problem, for instance by formulating it as a binary
classification task (i.e., classifying candidate instances of binary relations, be-
tween pairs of nominal expressions, as either related or not). Relevant previous
approaches include those that adopt feature-based supervised learning meth-
ods [10,21], or kernel-based methods [17,18] to perform relation extraction. The
major advantage of kernel methods is that they allow one to explore a large (often
exponential or, in some cases, infinite) feature space in polynomial computational
time, without the need to explicitly represent the features. Nonetheless, kernel
methods are still highly demanding in terms of computational requirements,
whenever one needs to manipulate large training data sets. The main reason for
this lays in the fact that kernel methods, even if relying only on very simple
kernels, are typically used together with models and learning algorithms such
as Support Vector Machines (SVM), where training involves a quadratic pro-
gramming optimization problem and is typically performed off-line. Moreover,
given that SVMs can only directly address binary classification problems, it is
necessary to train several classifiers (i.e., in a one-versus-one or a one-versus-all
strategy) to address multi-class relation extraction tasks.
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Given a set of positive and negative binary relation examples, feature-based
methods start by extracting syntactic and semantic features from the text, using
them as cues for deciding whether the entities in a sentence are related or not.
Syntactic features extracted from the sentences include (i) the entities them-
selves, (ii) the semantic types of the entities, (iii) the word sequence between
the entities, (iv) the number of words between the entities, and (v) the path
in a parse-tree containing the two entities. Semantic features can for instance
include the path between the two entities in a dependency tree. The features
are presented to a classifier in the form of a feature vector, which then decides
on the relation class. Previous works have explored different types of supervised
learning algorithms and different feature sets [10,21].

Feature-based methods have the limitation of involving heuristic choices, with
features being selected on a trial-and-error basis, to maximize performance. To
remedy the problem of selecting a suitable set of features, specialized kernels have
been designed for relationship extraction. They leverage rich representations of
the input data, exploring the input representations exhaustively, in an implicit
manner and conceptually in a higher dimensional space.

For instance, Bunescu and Mooney presented a generalized subsequence ker-
nel that works with sparse sequences, containing combinations of words and
parts-of-speech (POS) tags to capture the word-context around the nominal
expressions [4]. Three subsequence kernels are used to compute the similarity
between sequences (i.e., between relation instances) at the word level, namely
comparing sequences of words occurring (i) before and between, (ii) in the mid-
dle, and (iii) between and after the nominal expressions. A combined kernel is
simply the sum of all three sub-kernels. The authors evaluated their approach on
the task of extracting protein interactions from MEDLINE abstracts contained
in the AImed corpus, concluding that subsequence kernels in conjunction with
SVMs improve both precision and recall, when compared to a rule based system.
Bunescu and Mooney also argued that, with this approach, augmenting the word
sequences with POS tags and entity types can lead to better results than those
obtained with the dependency tree kernel by Culotta and Sorensen [7].

Zelenko et al. described a relation extraction approach, based on SVMs or
Voted Perceptrons, which uses a tree kernel defined over a shallow parse tree
representation of the sentences [18]. The kernel is designed to compute the sim-
ilarity between two entity-augmented shallow parse tree structures, in terms of
a weighted sum of the number of subtrees that are common between the two
shallow parse trees. These authors evaluated their approach on the task of ex-
tracting person-affiliation and organization-location relations from text, noticing
that the proposed method is vulnerable to unrecoverable parsing errors.

Culotta and Sorensen described a slightly generalized version of the previous
kernel, based on dependency trees, in which a bag-of-words kernel is also used
to compensate for errors in syntactic analysis [7]. Every node of the dependency
tree contains rich information like word identity, POS and generalized-POS tags,
phrase types (noun-phrase, verb-phrase, etc.), or entity types. Using a rich struc-
tured representation can lead to performance gains, when compared to bag-of-
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words approaches. A further extension is proposed by Zhao and Grishman, using
composite kernels to integrate information from different syntactic sources [20].
They incorporate tokenization, parsing, and dependency analysis, so that pro-
cessing errors occurring at one level may be overcome by information from other
levels. Airola et al. introduced the all-dependency-paths kernel [1]. They use a
representation based on a weighted directed graph that consists of two uncon-
nected subgraphs, one representing the dependency structure of the sentence,
and the other representing the sequential ordering of the words. Bunescu and
Mooney presented yet another alternative approach which uses information con-
centrated in the shortest path, at a dependency tree, between the two entities [3].
These authors argue that the shortest path between the two nominals encodes
sufficient information to infer the semantic relation between them.

Recent studies continue to explore combinations or extensions of the pre-
viously described kernel methods [11,13]. However, most proposals have been
evaluated on different data sets, making it difficult to assess which is better.

3 Relationship Extraction as Similarity Search

The proposed approach for classifying pairs of substrings (e.g., pairs of nominal
expressions) from a given sentence, according to the semantic relation that the
sentence expresses over these substrings, is based on the idea of finding the most
similar relation instances from a given database of examples. A representation
for each candidate binary relation, obtained from the sentence where the pairs
of substrings co-occur, is first generated. We then assign the relationship type,
to the instance being classified, according to the most frequent/similar type
at the top k most similar relation instances, gathered from the database of
examples. This procedure essentially corresponds to a weighted kNN classifier,
where each example instance has a weight corresponding to its similarity towards
the instance being classified, and where the more similar instances have therefore
a higher vote, in the classification, than the ones that are more dissimilar.

The considered representation for each binary relation instance is essentially
based on character quadgrams, specifically considering (i) the character quad-
grams occurring between the two operands that constitute the binary relation
(i.e., between the two substrings corresponding to the nominals that are related),
(ii) the quadgrams occurring in a window of three tokens before the first operand
and between operands, and (iii) the quadgrams occurring between operands and
in a window of three tokens after the second operand. Consider, for instance, the
following sentence, where the related nominals are in bold: the micropump is
fabricated by anisotropic etching, considering orientation. The substring (i)
would correspond to is fabricated by the, while substring (ii) would correspond
to the micropump is fabricated by, and substring (iii) would correspond to is
fabricated by anisotropic etching, considering orientation.

This representation follows the observation that a relation between two en-
tities is generally expressed using only words that appear in one of three basic
patterns, namely before-between (i.e., tokens before and between the two entities
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Dataset Relationship Relational Patterns

SemEval
cause-effect caused by; have; caused; result in; triggered by;
entity-origin have; come from; be from; run away from; arrive from;

Wikipedia
member-of play for; have also; serve in; elect to; serve as;
award nominate for; award; win; receive; run;

AImed
related bind to; bind; have; interact with; do
not-related bind to; bind; have; do; may

Table 1: Frequent relational patterns associated to different relation types.

involved in the relation), between (i.e., only tokens between the two entities),
and between-after (i.e., tokens between and after the two entities) [4]. Besides
character quadgrams, we also use prepositions, verb forms in the past participle
tense, the infinitive forms of verbs, and a relational pattern corresponding to a
verb, followed by nouns, adjectives, or adverbs, and ending with a preposition.
The previous relational pattern is inspired by one of the features used in ReVerb,
an unsupervised open-domain relation extraction system [8]. The morphologi-
cal information is extracted from the three same textual windows considered for
the quadgrams (i.e., the substrings before-between, between, and between-after),
with the help of the MorphAdorner NLP package1.

We experimented with other representations for the relation instances, using
different textual windows and different n-gram sizes, as well as with n-grams
of tokens, after normalizing the text through lowercasing, lemmatization and/or
WordNet-based generalization operations. However, the features described be-
fore achieve the best trade-off between accuracy and computational performance.

Each quadgram/token, at each of the three groups (i.e., before-between, be-
tween, and between-after), is assigned to a globally unique identifier. The similar-
ity between two instances is measured through the Jaccard similarity coefficient
between each set of globally unique identifiers.

For illustration purposes, Table 1 shows the top 5 most frequent relational
patterns for two different relations in each of the three datasets that were used
in our experiments – see Section 4. It is important to notice that in the case
of the AImed dataset, similar relational patterns are extracted for both classes.
We noticed that in instances from the not-related class, it is often the case that
patterns such as bind to are preceded by different kinds of negation patterns.

The naive approach to finding the most similar pairs of relation instances,
in a database of size N , involves computing all N2 pairwise similarities, which
quickly becomes a bottleneck for large N . Even if the task is parallelizable,
overcoming this complexity is necessary to achieve good scalability, and it is
therefore highly important to devise appropriate pre-processing operations that
facilitate relatedness computations on the fly. In our case, this is done by approx-
imating the Jaccard similarity coefficient through a minwise hashing (i.e., min-
hash) procedure, later leveraging a Locality-Sensitive Hashing (LSH) method
for rapidly finding the kNN most similar relation instances. We therefore have

1 http://morphadorner.northwestern.edu/
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that, contrary to traditional kNN classifiers, where training takes virtually zero
computation time (i.e., it just involves storing the example instances) but classi-
fication is highly demanding, our approach involves a LSH method for indexing
the training instances, which allows classification to be made efficiently, since
we only have to measure similarity towards a small set of candidates. Similarly
to other kNN classifiers, our approach remains relatively simple, performs the
learning in an on-line fashion, and can directly address multi-class problems.

The min-hash technique was first introduced in the seminal work of Broder,
where it was successfully applied to duplicate Web page detection [2]. Given a
vocabulary Ω of size D (the set of all representative elements occurring in a
collection of relation instances) and two sets, S1 and S2, where S1, S2 ⊆ Ω =
{1, 2, . . . , D}, we have that the Jaccard similarity coefficient, between the sets
of elements, is given by the ratio of the size of the intersection between S1 and
S2, to the size of the union of both datasets:

J(S1, S2) =
|S1 ∩ S2|
|S1 ∪ S2|

=
|S1 ∩ S2|

|S1|+ |S2| − |S1 ∩ S2|
(1)

The two sets are more similar when their Jaccard index is closer to one, and more
dissimilar when their Jaccard index is closer to zero. In large datasets, efficiently
computing the set sizes is challenging, given that the total number of possible
elements is huge. However, suppose a random permutation π is performed on the
ordering that is considered for the elements in the vocabulary Ω, i.e., suppose
π : Ω −→ Ω. An elementary probability argument shows that the Jaccard
coefficient can be estimated from the probability of the first (i.e., the minimum)
values of the random permutation π, for sets S1 and S2, being equal, given that
the Jaccard coefficient is the number of common elements to both sets over the
number of elements that exist in at least one of the sets.

Pr (min(π(S1)) = min(π(S2))) =
|S1 ∩ S2|
|S1 ∪ S2|

= J(S1, S2) (2)

After the creation of k minwise independent permutations (i.e., π1, π2, . . . , πk)
one can efficiently estimate J(S1, S2), without bias, as a binomial distribution:

Ĵ(S1, S2) =
1

k

k∑
j=1

1(min(πk(S1)) = min(πk(S2))) (3)

Variance(Ĵ(S1, S2)) =
1

k
Ĵ(S1, S2)

(
1− Ĵ(S1, S2)

)
(4)

Equations 3 and 4 show, respectively, the expected value of the binomial dis-
tribution used for estimating the Jaccard coefficient from the k random permu-
tations, and the corresponding variance, which decreases for larger values of k.
The function one–if–true() in Equation 3 returns one if the two sets share the
same minimum value, and zero otherwise.

In the implementation of the minwise hashing scheme, each of the indepen-
dent permutations is a hashed value, in our case taking 32 bits of storage. Each
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of the k independent permutations is associated to a polynomial hash function
hk(x) that maps the members of Ω to distinct values. For any set S we take the
k values of hkmin(S), i.e. the member of S with the minimum value of hk(x). The
set of k values is referred to as the min-hash signature of an instance.

Efficient nearest neighbor search is implemented through a Locality-Sensitive
Hashing (LSH) technique, that leverages the min-hash signatures to compress
the relation instance representations into small signatures (i.e., to generate small
signatures from the set of all character quadgrams, prepositions, verb forms
in the past participle tense, infinitive forms of verbs, and relational patterns
occurring before-between, between, and between-after the relation operands),
at the same time preserving the expected similarity of any pair of instances.
This technique uses L different hash tables (i.e., L different MapDB2 persistent
storage units), each corresponding to an n-tuple from the min-hash signatures,
that we here refer to as a band. At classification time, we compute a min-hash
signature for a given target instance and then consider any pair that hashed to
the same bucket, for any of the min-hash bands, to be a candidate pair. We check
only the candidate pairs for similarity, using the complete min-hash signatures to
approximate the Jaccard similarity coefficient. This way, we avoid the pair-wise
similarity comparisons against all example instances, thus performing the kNN
classification in a efficient manner. Chapter 3 of the book by Rajaraman and
Ullman details the use of minwise hashing with LSH techniques, in applications
related to finding similar items [15].

A complete outline for the proposed method is therefore as follows: First, sets
of character quadgrams, prepositions, verb forms in the past participle tense, in-
finitive forms of verbs, and relational patterns, are extracted from the substrings
that occur before-between, between, and between-after the relation operands, for
each possible relation at each sentence from a given database of examples. Then,
a list of min-hashes are extracted from the sets generated in the first step. The
min-hashes are split into bands, and hashed into the L different hash tables.
At classification, when checking if a given binary relation, as expressed in some
sentence, is being described, we start by also extracting the same set of features,
from the substrings that occur before-between, between, and between-after two
named entities to be considered the relation operands. A min-hash signature is
then generated from this set of features. Relation instances, from the collection
of examples, with at least one identical LSH band, are considered as candidates,
and their Jaccard similarity coefficient towards the target instance is then esti-
mated, from the available min-hashes. The candidates are sorted according to
their similarity towards the target instance, and the most relevant relationship
type, computed with basis on the weighted votes from the top kNN most similar
instances, is returned as the identified semantic relationship type.

2 http://www.mapdb.org/
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SemEval Wikipedia AImed
Train Test Train Test Data

# Sentences 8,000 2,717 2,199 926 2,202
# Terms 137,593 46,873 49,721 20,656 75,878
# Relation classes 19 19 47 47 2
# Relation instances (except not-related/other) 6,590 2,263 15,963 6,386 1,000
# Nominals 16,001 5,434 5,468 2,258 4,084
Avg. sentence length (terms) 119.8 119.4 177.2 172.8 184.2
StDev. sentence length (terms) 45.0 44.4 104.5 100.1 98
Avg. instances/class 421 143 295.6 135.9 1,961.5
StDev. instances/class 317.5 105.5 1707.3 728.2 1,372.5
Max. instances/class (except not-related/other) 844 22 268 113 1,000
Min. instances/class 1 1 1 1 1,000

Table 2: Statistical characterization of the considered datasets.

4 Experimental Validation

The minwise hashing method proposed for performing semantic relation extrac-
tion was evaluated with three different document collections, from different do-
mains, which are commonly used as benchmarks for this problem.

A statistical characterization of the three datasets used in our experiments
is given in Table 2. The SemEval dataset3 consists of 10,717 sentences, anno-
tated according to 19 possible classes between two nominals in each sentence (
9 non-symmetric relations types, such as cause-effect or instrument-agency, plus
another label for denoting that no relationship is being expressed). The dataset
is relatively balanced between the classes, and is split into training and testing
subsets, with 8,000 instances for training and 2,717 for testing.

The Wikipedia dataset4 consists of paragraphs from 441 Wikipedia pages,
containing annotations for 4,681 relation mentions of 53 different relation types
like job-title, birth-place, or political-affiliation. The dataset comes split into
training and testing subsets, with about 70% of the paragraphs for testing, and
the remaining 30% for training. In the Wikipedia dataset, the distribution of
the examples per class is highly skewed: job-title is the most frequent relation
(379 instances), whereas grandmother and discovered have just one example in
the dataset. Moreover, although the full dataset contains annotations to the 53
different semantic relationship types, only 46 types are included in both the
training and testing subsets, and still, of these 46 relation types, 14 of them
have less than 10 examples. We therefore measured our results over a subset
of 46 relationship types. In the experiments with this Wikipedia dataset, we
only considered the problem of predicting the relationship type (i.e., classifying
according to one of the 46 semantic relationship types, or as other), and not ac-
cording to the direction of the relation. Of all the three datasets, this was the one
that least fitted our general approach for modeling the relationship extraction
task, and significant adaptations had to be made.

3 http://semeval2.fbk.eu/semeval2.php?location=tasks&taskid=11
4 http://cs.neiu.edu/~culotta/data/wikipedia.html
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Min 1 kNN 3 kNN 5 kNN 7 kNN
Dataset Hash P R F1 P R F1 P R F1 P R F1

SemEval
(18 classes)

200/25 0.662 0.622 0.641 0.683 0.642 0.662 0.698 0.652 0.674 0.698 0.637 0.666
200/50 0.662 0.621 0.640 0.683 0.643 0.662 0.698 0.651 0.673 0.698 0.636 0.666
400/25 0.664 0.636 0.650 0.685 0.668 0.676 0.708 0.672 0.690 0.691 0.667 0.679
400/50 0.663 0.635 0.649 0.684 0.664 0.674 0.708 0.674 0.690 0.694 0.670 0.682
600/25 0.657 0.631 0.644 0.677 0.660 0.669 0.697 0.674 0.685 0.695 0.660 0.677
600/50 0.657 0.631 0.644 0.676 0.658 0.667 0.699 0.678 0.688 0.694 0.664 0.678
800/25 0.654 0.630 0.642 0.675 0.656 0.665 0.694 0.662 0.678 0.696 0.658 0.677
800/50 0.654 0.632 0.643 0.677 0.658 0.667 0.698 0.665 0.681 0.696 0.658 0.676

Wikipedia
(46 classes)

200/25 0.410 0.336 0.369 0.434 0.335 0.378 0.439 0.310 0.363 0.489 0.323 0.389
200/50 0.409 0.336 0.369 0.435 0.336 0.379 0.440 0.310 0.364 0.489 0.321 0.387
400/25 0.453 0.350 0.394 0.472 0.354 0.405 0.507 0.348 0.413 0.485 0.323 0.388
400/50 0.450 0.349 0.393 0.468 0.354 0.403 0.503 0.350 0.412 0.509 0.328 0.399
600/25 0.419 0.344 0.378 0.439 0.352 0.391 0.492 0.364 0.419 0.522 0.365 0.430
600/50 0.419 0.343 0.377 0.444 0.354 0.394 0.485 0.353 0.408 0.532 0.353 0.425
800/20 0.416 0.344 0.377 0.431 0.348 0.385 0.493 0.351 0.410 0.513 0.343 0.411
800/50 0.419 0.345 0.378 0.433 0.350 0.387 0.515 0.346 0.414 0.517 0.338 0.409

AImed
(1 class)

200/25 0.405 0.545 0.465 0.430 0.509 0.466 0.480 0.484 0.482 0.507 0.460 0.482
200/50 0.405 0.545 0.465 0.430 0.509 0.466 0.480 0.484 0.482 0.507 0.460 0.482
400/25 0.420 0.589 0.491 0.451 0.554 0.497 0.481 0.524 0.501 0.516 0.502 0.509
400/50 0.420 0.588 0.490 0.455 0.561 0.502 0.484 0.529 0.505 0.519 0.505 0.512
600/25 0.409 0.605 0.488 0.445 0.571 0.500 0.475 0.529 0.500 0.511 0.513 0.512
600/50 0.409 0.605 0.488 0.445 0.571 0.500 0.475 0.530 0.501 0.511 0.513 0.512
800/25 0.416 0.613 0.496 0.453 0.595 0.514 0.481 0.547 0.512 0.490 0.512 0.501
800/50 0.418 0.614 0.498 0.454 0.596 0.515 0.482 0.545 0.511 0.489 0.514 0.501

Table 3: Results obtained with different configurations of the proposed method.

Finally, the AImed corpus5 consists of 225 MEDLINE abstracts, 200 of which
describing interactions between human proteins. There are 4,084 protein refer-
ences and approximately 1,000 tagged interactions. In this data set there is no
distinction between genes and proteins, and the relations are symmetric and of
a single type. We relied on a 10-fold cross validation methodology in the exper-
iments with AImed, using the same splits as Mooney and Bunescu [4].

Using the three different datasets, we experimented with different parameters
for the minwise hashing-based scheme, namely by varying the number of nearest
neighbors that was considered (1, 3, 5 or 7), the size of the min-hash signatures
(200, 400, 600 or 800 integers) and the number of LSH bands (25 or 50 bands).
Notice that when using b bands of r rows each, the probability that the signatures
of two sets S1 and S2 agree in all the rows of at least one band, therefore becoming
a candidate pair, is 1−(1−J(S1, S2)r)b. With 50 bands and a min-hash signature
of size 600, roughly one in 1000 pairs that are as high as 85% similar will fail to
become a candidate pair through the LSH method, and thus be a false negative.
With these parameters, instances with a similarity bellow 85% are also likely to
be discarded through the LSH method, which can contribute to the confidence
in a correct classification (i.e., we are also trading precision for recall, when
selecting the minwise hashing parameters).

As evaluation measures, we used macro-averaged precision, recall and F1-
scores over the relation labels, apart from the not-related/other labels. This cor-
responds to calculating macro-averaged scores over 18 classes in the case of the
SemEval dataset, over 46 classes in the case of the Wikipedia dataset, and we

5 ftp://ftp.cs.utexas.edu/pub/mooney/bio-data/
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measured results over the single is-related class in the AImed dataset. Table 3
presents the obtained results, showing that using the 5 or the 7 nearest neighbors,
instead of just the most similar example, results in an increased performance for
the SemEval and Wikipedia datasets, while a better F1 score was obtained for
the AImed dataset when considering the 3 nearest training examples.

Table 4 presents per-class results in the case of the SemEval dataset, consid-
ering the configuration that achieved the best performance in the results from
Table 3 (i.e., a configuration using the 5 nearest neighbors, with a min-hash size
of 400, and with 50 bands in the LSH method). Besides the results on the regular
SemEval classification setting, involving relation types with direction, we also
present results in a setting that ignores the relation directions (i.e., considering
8 different relationship classes) as well as individual results for the class corre-
sponding to other-relations. The results show that some classes, such as cause-
effect are relatively easy to classify, whereas classes such as instrument-agency
are much harder. For the class corresponding to entity-destination(e1,e2), the
dataset only contains one instance for training and one instance for testing.

In terms of comparisons with the current state-of-the-art, the best partici-
pating system at the SemEval 2010 task achieved a performance of over 0.82 in
terms of the F1 metric, whereas the second best system reported an F1 score
of 0.77. The median F1 score was of 0.68, while our best F1 score was of 0.69.
Participating systems used a variety of methods and resources. For instance the
winning entry used Google’s n-gram collection and an approach that splits the
task into two classification steps (i.e., relationship type and direction), whereas
the second best participant used Cyc as a semantic resource. Almost all par-
ticipants used features derived from WordNet, Roget’s Taxonomy, or Levin’s
verb classes. In our approach, we used a simpler set of features common to dif-
ferent domains and mostly language independent: we only need POS tags for
computing some of the features, and POS tagging can be made efficiently and
accurately for most languages [14]. Comparing with other approaches over the
same datasets, our method is focused on addressing scalability, although still
attaining competitive results in terms of accuracy.

In the specific case of the AImed dataset, previous studies have mostly com-
pared different kernel-based methods, reporting F1 scores ranging from 0.26 to
0.60, with a common cross-validation methodology [1,17]. For instance the sub-
sequence kernel from Bunescu and Mooney achieves an F1 score of 0.54 [4],
while the all-dependency-paths kernel from Airola et al. achieves an F1 score of
0.56 [1]. Our min-hash approach has slightly inferior results, with an F1 score
of 0.52, but we argue that our method has advantages over kernel-approaches in
terms of simplicity, support for multi-class on-line learning, and scalability.

Our approach is significantly different from that of commonly used kernel-
based methods, which involve two main components. First, the linguistic struc-
tures, to be used within the kernels, have to be generated. Dependency parsers
can be about an order of magnitude faster than syntax parsers, on average tak-
ing 130 milliseconds per sentence on modern hardware. POS tagging is about
1.5 orders of magnitude faster than dependency parsing, on average taking 4
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Instances Asymmetrical Symmetrical
Relation Direction (train/test) Precision Recall F1 Precision Recall F1

Cause-Effect
(e1,e2) 344/134 0.843 0.843 0.843

0.798 0.902 0.847
(e2,e1) 659/194 0.735 0.902 0.810

Component-
Whole

(e1,e2) 470/162 0.572 0.759 0.653
0.628 0.670 0.648

(e2,e1) 150/129 0.609 0.520 0.561
Entity-
Destination

(e1,e2) 844/291 0.744 0.911 0.819
0.747 0.901 0.817

(e2,e1) 1/1 1.000 0.000 0.000

Entity-Origin
(e1,e2) 568/211 0.789 0.815 0.802

0.756 0.795 0.775
(e2,e1) 148/47 0.667 0.723 0.694

Product-
Producer

(e1,e2) 323/108 0.670 0.602 0.634
0.673 0.589 0.628

(e2,e1) 394/123 0.654 0.569 0.609
Member-
Collection

(e1,e2) 78/32 0.778 0.438 0.560
0.767 0.777 0.772

(e2,e1) 612/201 0.776 0.791 0.783

Message-Topic
(e1,e2) 490/210 0.751 0.733 0.742

0.778 0.778 0.778
(e2,e1) 144/51 0.750 0.706 0.727

Content-
Container

(e1,e2) 374/153 0.726 0.778 0.751
0.706 0.802 0.751

(e2,e1) 166/39 0.627 0.821 0.711
Instrument-
Agency

(e1,e2) 97/22 0.429 0.545 0.480
0.605 0.667 0.634

(e2,e1) 407/134 0.615 0.679 0.645
Other — 1410/454 — — — 0.442 0.293 0.352
Macro-average — — 0.708 0.674 0.690 0.718 0.764 0.740

Table 4: Results obtained for different relation classes in the SemEval dataset.

milliseconds per sentence on modern hardware. Our method mostly relies on
character quadgrams, although we also used POS tags for improving accuracy.
Nonetheless, we avoid complex NLP operations associated with parsing the sen-
tences. Second, we have that the substructures used by the kernels have to be
determined, and the classifier has to be applied. Using the AImed dataset, Tikk
et al. reported on times of approximately 66.4 and 10.8 seconds, for training
and testing (i.e., without feature extraction) an SVM classifier using a shallow
linguistic kernel that is essentially a simplified version of the subsequence kernel
from Bunescu and Mooney [4], as well as times of approximately 4517.4 and
3.7 seconds from training and testing, using the all-paths-graph kernel [17]. In
our experiments, which were executed on modern hardware and using a single
core, it took us 172 seconds for processing all three stages (i.e., feature extrac-
tion, training and testing) with the SemEval 2010 dataset, when considering the
5 nearest neighbors, min-hash signatures of size 400, and 50 bands. Each fold
from the AImed dataset takes around 161 seconds to process considering the 3
nearest neighbors, min-hash signatures of size 800 and 50 bands.

Although a direct comparison against the current stat-of-the-art methods, in
terms of computational performance, cannot be made easily (i.e., this would re-
quire a common set of tools for performing feature extraction, as well as running
the implementations of the different algorithms on the same hardware and over
exactly the same datasets) we provide some detailed figures for the performance
of our method. The charts on Figure 1 present the processing times, in seconds,
that are separately involved in feature extraction from the training and testing
data, training (i.e., data indexing) and classification, for the different settings
represented in Table 3. In the case of the AImed dataset, the charts show the
average time over the 10 different folds.
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Fig. 1: Processing times, in seconds, for each dataset and configuration.

The total processing time involved in each experiment naturally increases
with the size of the dataset being considered. The time taken to extract features
is independent of the LSH configuration being used, and the results indicate
that these values represent a significant amount of the total processing time
that is involved in each experiment. The results also show that the indexing
times increase significantly as the size of the min-hash signatures gets larger,
since more hash functions need to be computed, and more min-hash values have
to be stored and compared. Augmenting the number of bands in turn increases
the classification time, since the number of hash tables where we have to look
for candidate instances, and possibly also the number of candidates increases.

Figure 2a shows how the proposed method performs, in terms of processing
times, over the training phase and with an increasingly larger dataset, specif-
ically when considering 25%, 50%, 75% and 100% of the SemEval dataset. In
Figure 2b, the training was performed over the full SemEval training dataset,
and then the classification time was also measured for different partitions of the
test dataset. Both times were measured with the configuration that achieved the
best performance on SemEval, in terms of the F1 score – see Table 3. The time
taken to process the data, both for training and for classification, grows almost
linearly with the dataset size.

Besides simplicity, computational efficiency, and direct support for multi-
class classification, our method also has the advantage of being completely on-
line, since to consider new training examples, we only need to compute their
min-hash signatures and store them in the LSH hash tables.
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Fig. 2: Processing times with different partitions of the SemEval dataset.
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5 Conclusions and Future Work

Through this work, we have empirically evaluated a min-hash based method
for fast extraction of semantic relationships from textual documents. We made
experiments with well known datasets from three different application domains,
showing that the task can be performed with high accuracy, using a simple
on-line method based on similarity search, that is also computationally efficient.

Despite the interesting results, there are also opportunities for improvement.
For instance, some of the state-of-the-art kernel methods for relation extraction
also explore similarity between graph-based representations for the relation in-
stances, derived from both lexical information and from constituency/dependency
parsing [13]. Recent studies have proposed minwise hashing methods for compar-
ing graphs [16], and it would be interesting to experiment with the application
of these methods in the task of relationship extraction from textual documents,
using richer graph-based representations for the relation instances. The pro-
posed approach for measuring similarity between relation instances, based on
the Jaccard similarity coefficient, could also be integrated into a general kernel-
based framework (i.e., an SVM classifier using a kernel function based on the
Jaccard similarity coefficient), and it would be interesting to see if supervised
learning methods could be used to discover weights for properly combining differ-
ent Jaccard similarity coefficients, computed for instance with basis on different
sub-strings surrounding the relation operands.

Since the seminal work of Broder on minwise hashing [2], there have also
been considerable theoretical and methodological developments in terms of the
application of minwise hashing techniques. For future work, we would like to ex-
periment with the b-bit minwise hashing approach presented by Li and König [12]
for improving storage efficiency on very large datasets, or with the extension pro-
posed by Chum et al. for approximating weighted set similarity measures [5].
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